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A B S T R A C T

The limited availability of soil information has been recognized as a main limiting factor in digital soil map-
ping (DSM) studies. It is therefore important to optimize the joint use of the three sources of soil data that
can be used as inputs of DSM models, namely spatial sets of measured sites, soil maps and soil sensing
products.
In this paper, we propose to combine these three inputs, through a cokriging with a categorical external drift
(CKCED). This new interpolation technique was applied for mapping seven soil properties over a 24.6 km2

area located in the vineyard plain of Languedoc (Southern France), using an hyperspectral imagery product
as example of a soil sensing data. Cross-validation results of CKCED were compared with those of five spatial
and non-spatial techniques using one of these inputs or a combination of two of them.
The results obtained in the La Peyne Catchment showed i) the utility of soil map and hyperspectral imagery
products as auxiliary data for improving soil property predictions ii) the greater added-value of the latter
against the former in most situations and iii) the feasibility and the interest of CKCED in a limited number
of soil properties and data configurations. Testing CKCED in case study with soil maps of better quality and
soil sensing techniques covering more area and depths should be necessary to better evaluate the benefits
of this new technique.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Given the relative lack of, and the huge demand for, quantitative
spatial soil information to be used in environmental managing and
modelling, digital soil mapping (DSM) has been proposed as an alter-
native to the classical soil surveys for the quantitative mapping of
soil properties over regions at intermediate (20–200 m) spatial res-
olutions (McBratney et al., 2003). McBratney et al. (2003) proposed
the equation S = f(s,c,o,r,p,a,n) for summarizing the general principle
of DSM. According to this equation, a soil property (S) can be pre-
dicted by a spatial inference function (f) using, as input, the existing
soil information (s), the spatial covariates that map the different fac-
tors of soil formation early defined by Jenny (1941) (c,o,r,p,a,) and the
geographical location (n) that can highlight any spatial trends missed
by the other covariates.

It has been early stressed that the limited availability of the
soil information (the s component) was a severe limiting factor in
DSM applications (Lagacherie, 2008). Up to now, most of the soil
information used as input in DSM for mapping soil properties has
been either soil maps or spatial sampling of sites with measured soil

properties. When available under the form of soil databases (Rossiter,
2004), the former may provide estimates of soil properties over
larger areas with however limited spatial resolutions and accuracy
(Marsman and Gruijter, 1986; Leenhardt et al., 1994; Odgers et al.,
2012). Pedometricians have developed a large range of algorithms for
exploiting spatial sampling of sites for mapping soil properties, using
sites with measured soil properties combined with spatial covariates
(Oliver and Webster, 1989). Recent operational applications of DSM
are converging toward the use of regression kriging (Malone et al.,
2011; Hengl et al., 2014) in which the two sources of soil data are
used together, soil map as a soil covariate among others and spatial
sampling with measured soil properties as input data for calibration
of the regression model and for spatial interpolation of the regres-
sion residuals. However, in situations of sparse spatial sampling that
often occurs in operational DSM, the performances of the regression
kriging remain severely limited (Vaysse and Lagacherie, 2015).

The spatial estimations of soil properties produced by Soil Sensing
are a third type of soil information that may be considered also as a
DSM input that may mitigate the dearth in soil data. A growing num-
ber of sensors is now available for producing very high resolution
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(< 5 m) images of estimated soil properties, either by field-based (or
proximal) soil sensing techniques (Adamchuk and Viscarra Rossel,
2010; Mouazen et al., 2007) or by airborne sensing techniques (Selige
et al., 2006; Stevens et al., 2010; Gomez et al., 2008). However, these
soil sensing products are most often available over uncompleted and
scattered areas because of their high costs and of their limited condi-
tions of application. This prevents from using them as soil covariates
in a classical regression kriging approach. As an alternative for map-
ping soil properties over a region with soil sensing products, we
proposed a co-kriging approach (Lagacherie et al., 2012) that com-
bined such input with a spatial sampling of measured sites. By taking
hyperspectral-based estimations of clay content over a limited set
of fields with bare surfaces as an example of soil sensing input,
we showed that soil sensing could bring a significant increase of
accuracy of clay content predictions over a whole region.

In this paper, we went a step further by developing and testing a
new kriging approach, namely cokriging with a categorical external
drift (CKCED), which combines the three possible soil inputs - soil
map, spatial sampling of measured sites and soil sensing products.
This approach was compared with spatial and non-spatial techniques
using one of these inputs or a combination of two of them. The com-
parisons were performed for seven soil properties (Clay, silt, sand,
Calcium Carbonate, pH, Total Iron and CEC) mapped over a 24.6 km2

area located in the vineyard plain of Languedoc (Southern France).

2. Case study

2.1. Study area

The study was carried out in the La Peyne catchment (Fig. 1) in
the South of France 43o9′0′ ′N and 3o2′0′ ′ E. Vineyards form the pri-
mary land use in the area. Marl, limestone and calcareous sandstones
from Miocene marine and lacustrine sediments formed the parent
material of several soil types observed in this area, including Lithic
Leptosols, Calcaric Regosols and Calcaric Cambisols (WRB soil classi-
fication, ISSS-ISRIC-FAO, 1998). These sediments were partly covered
by successive alluvial deposits ranging from the Pliocene to Holocene
and differed in their initial nature and in the duration of weathering
conditions. These sediments have produced an intricate soil pattern
that includes a large range of soil types, such as Calcaric, Chromic
and Eutric Cambisols, Chromic and Eutric Luvisols and Eutric Fluvi-
sols (Coulouma et al., 2008). The local transport of colluvial material
along the slopes has added to the complexity of the soil patterns.
An earlier ground sampling made in the study region (Lagacherie,
2008) showed that these complex soil patterns correspond to a great
variability of clay content at the soil surface (from 65 g.kg−1 to
452 g.kg−1 ). A study area of 24.6 km2(Fig. 1) was defined by inter-
secting this region of interest with the hyperspectral image used in
this study.

2.2. Data

2.2.1. Spatial sampling of measured sites
143 sites (average sampling density of 1 site / 17 ha) were sam-

pled in the study area for measurements of soil properties. All of
these samples were composed of five sub-samples collected to a
depth of 5 cm for representing a 5 m×5 m square. The geographical
position at the centre of this square was recorded by a decimetric
GPS instrument. After homogenization of the sample, and removal
of plant debris and stones, sieving and air drying, about 20 g was
devoted to soil properties laboratory analysis. Seven soil proper-
ties for which previous estimations from hyperspectral data were
attempted (Gomez et al., 2012a) were determined using classical
physico-chemical soil analysis (Baize, 1988): calcium carbonate con-
tent (CaCO3), clay content (granulometric fraction ≺ 2 lm), silt
content (granulometric fraction between 2 to 50 lm), sand content

(granulometric fraction between 0,05 and 2 mm), free iron content,
cation-exchange capacity (CEC) and pH.

Two subsets of sites can be distinguished among the set of 143
sites. 95 sampled sites were located in the bare soil fields. Both soil
properties measurements and hyperspectral data suitable for esti-
mation of soil properties were available for these 95 sites (Fig. 1 left).
The remaining 48 sites had soil content measurements but unsuit-
able hyperspectral data because they were located in vineyard fields
covered by vegetation. Both subsets were sampled for obtaining an
even spatial distribution of sites while respecting the relative impor-
tance of the soil mapping units delineated by Coulouma et al. (2008).
It must be noted that the criteria of selection of the two subsets of
sites (bare soil vs vegetated fields) was totally independent from the
spatial distribution of soils, which therefore did not generate any
sampling bias.

2.2.2. Soil map
The soil map was derived from a very detailed soil map of the

study area (Coulouma et al., 2008) by an expert-based grouping of
the initial soil units into seven soilscapes as homogeneous as pos-
sible regarding the topsoil properties focused in this study. These
soilscapes were described in details in Gomez et al. (2012a). The
grouping into soilscapes was necessary for obtaining soil mapping
units that included a number of sites large enough for applying the
tested geostatistical procedures.

2.2.3. Airborne HYMAP image and its derivative
The HYMAP airborne imaging spectrometer measured reflected

radiance in 126 non-contiguous bands covering the 400–2500 nm
spectral range with around 19 nm bandwidths and average sam-
pling intervals of 17 nm in the 400–2500 nm domain (http://www.
intspec.com/). The HYMAP image was acquired on 13 July 2003 from
a 3000 m altitude, providing a 5×5 m spatial resolution. Radiometric
calibration was performed inflight (Richter, 1996) using nadir ground
measurements (Beisl, 2001). The ATCOR4 code for airborne sensors
was used for atmospheric corrections (Richter and Schlapfer, 2000).
Topographic corrections were performed with a high-resolution dig-
ital elevation model from the Institut Géographique National (www.
ign.fr) and DGPS ground control points.

The image was masked by using NDVI to remove living vegetation
(essentially vineyards). The cellulose absorption band (2010 nm) was
used to remove dry vegetation. Small areas of bare soils located at
the parcel margins or along roads and pathway were also removed
since they were not judged as representative of the neighbouring
soil surfaces. Finally, the image provided usable data over 33, 690
pixels covering 3.5% of the total area only, that is the 192 bare soil
fields that were randomly scattered over the region at the date of
measurement.

3. Methods

3.1. Experimental set-up

We present hereafter the general workflow of our testing (Fig. 2).
The details on methods are presented further.

The new algorithm combining the three possible types of soil
information (CKCED) was compared with five non spatial and spa-
tial methods that involved less types of soil information (Fig. 2).
Ordinary Kriging (OK) and Partial-Least-square-Regression (PLSR)
were applied for providing estimations of soil properties (denoted
products in Fig. 2) from the spatial sampling of measured sites and
from hyperspectral data respectively. Soil Map and spatial sam-
pling of measured sites were combined twice, first by a baseline
method that consists in computing a mean per soil mapping units
(SMM), second by a more sophisticated Kriging with Categorical
Drift (KCED, Monestiez et al., 2001). Finally the product derived
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