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A B S T R A C T

Accurate estimation of unsaturated hydraulic conductivity K(Sw) in soils has been of great interest to soil
physicists and hydrologists in the past several decades. Although various methods such as a “bundle of capillary
tubes” conceptual approach were applied in the literature to theoretically model hydraulic conductivity in term
of water saturation, in this study we invoke percolation theory, which quantifies the effect of the
interconnectivity of pores on the macroscopic fluid flow. We incorporate the pore-solid interface roughness
effect in the hydraulic conductance-pore radius (g-r) relationship, evaluate our K(Sw) model using 104 soil
samples from the UNSODA database as well as another 20 soil samples from the Rijtema database, and compare
it to the Ghanbarian-Alavijeh and Hunt (2012) model. Generally speaking, we experimentally demonstrate that
K(Sw) estimations were improved over the entire range of water saturation when the surface roughness effect
was incorporated. However, our model still underestimates the unsaturated hydraulic conductivity at low water
saturations (corresponding to K(Sw) < 10−4 cm/day). We show that after eliminating the effect of non-
equilibrium conditions in the measurements K(Sw) estimations were improved substantially. Other plausible
sources for K(Sw) underestimation are also discussed.

1. Introduction

Accurate estimate of unsaturated hydraulic conductivity K(Sw) is
still challenging and of great interest, particularly in two-phase flow
and contaminant transport modeling in soils. Various models based on
data mining techniques (e.g., Wösten and van Genuchten, 1988;
Vereecken et al., 1990; Vereecken, 1995; Schaap and Leij, 1998;
Weynants et al., 2009), bundle of straight capillary tubes (e.g.,
Purcell, 1949; Childs and Collis-George, 1950; Burdine, 1953;
Mualem, 1976; Kosugi, 1999), bundle of tortuous capillary tubes (e.g.,
Yu et al., 2003; Liu et al., 2007; Xu et al., 2013), critical path analysis
(e.g., Hunt, 2001; Hunt and Gee, 2002a,b; Hunt, 2004a; Ghanbarian-
Alavijeh and Hunt, 2012; Hunt et al., 2013), effective-medium approx-
imations (e.g., Levine and Cuthiell, 1986; Kanellopoulos and Petrou,
1988; Ghanbarian et al., 2016b), percolation theory (e.g., Larson et al.,
1981; Heiba et al., 1992; Blunt et al., 1992), pore network models (e.g.,
Jerauld and Salter, 1990; Blunt and King, 1991; Bakke and Øren, 1997;
Raoof and Hassanizadeh, 2012) and lattice-Boltzmann methods (e.g.,
Hazlett et al., 1998; Ramstad et al., 2010; Zhang et al., 2016) have been
developed to estimate K(Sw) from other porous medium characteristics,
such as water retention curve (also known as capillary pressure curve),

particle-size distribution, porosity, saturated hydraulic conductivity Ks,
two- and three-dimensional images, etc.

The literature on unsaturated hydraulic conductivity modeling and
estimation is vast and extensive. Several researchers modified the
Kozeny-Carman equation to model the unsaturated hydraulic conduc-
tivity in porous media (e.g., Alpak et al., 1999; Rezanezhad et al., 2009;
Khaleel, 2010). Numerous studies compared the performance of the
Burdine (1953) modal with that of Mualem (1976) via experimental
data (see e.g., van Genuchten and Nielsen, 1985; Alexander and Skaggs,
1986; Nimmo and Akstin, 1988; Khaleel and Saripalli, 2006; Yang and
Mohanty, 2015). Even recently, Burdine (1953) and Mualem (1976)
models were combined to improve unsaturated hydraulic conductivity
estimation from soil water retention data (see Valiantzas, 2010). Both
Burdine (1953) and Mualem (1976) models idealize a porous medium
constructed of interconnected pores as a bundle of non-interconnected
and straight cylindrical pore tubes. In reality pores exist neither in
series nor in parallel but are typically distributed randomly throughout
a complex multi-scale network.

Some studies defined tortuosity-connectivity factor in the bundle of
capillary tubes approach in a more rigorous way to improve K(Sw)
estimations (e.g., Assouline, 2001; Vervoort and Cattle, 2003; Kuang
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and Jiao, 2011). Some others considered saturated hydraulic conduc-
tivity Ks and/or tortuosity-connectivity factor as a matching point in the
Mualem-van Genuchten model (e.g., Schaap and Leij, 2000; Tuli et al.,
2005). Including concepts from liquid-vapor interfacial area has also
improved unsaturated hydraulic conductivity in porous materials (see
e.g., Or and Tuller, 1999, 2000, 2003; Tuller and Or, 2001, 2002; Zand-
Parsa and Sepaskhah, 2004; Zand-Parsa, 2006).

Hunt (2001) was probably the first to apply critical path analysis
(CPA), introduced by Ambegaokar et al. (1971) and Pollak (1972), to
estimate the unsaturated hydraulic conductivity of soils, although some
applications of such approach have been previously proposed to model
permeability in disordered rocks (e.g., Katz and Thompson, 1986, 1987;
David et al., 1990) and pore networks (e.g., Sahimi, 1993; Bernabé,
1995; Shah and Yortsos, 1996; Bernabé and Bruderer, 1998; Friedman
and Seaton, 1998). Hunt (2001) combined the Rieu and Sposito (1991)
model of pore-size distribution with CPA, estimated the unsaturated
hydraulic conductivity and showed good match with experiments from
the Hanford, DOE site, particularly at high water saturations. Hunt and
Gee (2002a) extended the Hunt (2001) method and estimated K(Sw)
from particle-size distribution for Hanford data. They found good
agreement with experiments over 4–6 orders of magnitude. Years later,
Ghanbarian-Alavijeh and Hunt (2012) combined concepts from critical
path analysis and percolation theory with the pore-solid fractal model
(Perrier et al., 1999; Bird et al., 2000) and proposed a more general K
(Sw) model as follows
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where K(Sw) and Ks are the hydraulic conductivity under partially and
fully saturated conditions, respectively, ϕ is the porosity, Sw is the water
saturation, D is the pore-solid interface fractal dimension, β is the pore-
solid fractal (PSF) model parameter varying between ϕ and 1, λ= D,
and Swc is the critical water saturation (percolation threshold for water
flow). One may roughly approximate Swc from water saturation at
1500 kPa tension head from the soil water retention curve (van
Genuchten, 1980). Alternatively, finite-size scaling analysis (see e.g.,
Rintoul and Torquato, 1997; Priour, 2014), Monte Carlo simulations
(see e.g., Baker et al., 2002), mercury intrusion porosimetry data (Katz
and Thompson, 1986, 1987) or morphological techniques (e.g., Liu and
Regenauer-Lieb, 2011) may be used to estimate the percolation thresh-
old.

In Eq. (1) Swx is the crossover point at which fractal scaling from
critical path analysis switches to universal percolation scaling from
percolation theory. Swx can be determined by setting equal Eq. (1) top
line and Eq. (1) bottom line as well as their derivatives as follows
(Ghanbarian-Alavijeh and Hunt, 2012; Ghanbarian et al., 2016a):
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The unknown parameters in Eqs. (1) and (2), such as D and β are
determined by fitting the following PSF model (Bird et al., 2000) to
measured soil water retention data
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where h is the tension head, hmin is the air entry value, and hmax is the
maximum tension head corresponding to the minimum accessible pore
radius via the Young-Laplace equation. Eq. (3) – that reduces to the
Tyler and Wheatcraft (1990) and Rieu and Sposito (1991) models when
β = ϕ and 1, respectively – has the same form as the Perrier et al.
(1996) and Ghanbarian-Alavijeh et al. (2012) models developed using
different methodologies.

Following Hagen-Poiseuille's law, hydraulic conductance g in a
perfectly cylindrical pore tube is proportional to pore radius to the
fourth divided by its length (i.e., g ∝ r4/l). In a self-similar fractal porous
medium, however, one may assume pore length proportional to its
radius (l ∝ r) and thus g ∝ r3 (see e.g., Katz and Thompson, 1986; Hunt,
2001). Using this methodology Hunt (2001) and Hunt and Gee (2002a)
set λ = 3. To be consistent with non-universal results of Balberg
(1987), Hunt (2005) later proposed λ = D, followed by Ghanbarian-
Alavijeh and Hunt (2012), Hunt et al. (2014) and Ghanbarian et al.
(2015).

Recently, Ghanbarian et al. (2016a) incorporated the effect of
surface roughness into the hydraulic conductance in a single pore tube
with unsmooth pore-solid interface, proposed g ∝ r 2(4–D) – (3–D) / (2D–3)

and suggested that λ should be 2(4–D) – (3–D) / (2D–3) in isotropic
porous media. Note that Cai et al. (2014) modified Hagen-Poiseuille's
law for tortuous and irregular shaped pores but did not include the
effect of surface roughness. Ghanbarian et al. (2016a) showed that
λ = 2(4–D) – (3–D) / (2D–3) resulted in more accurate K(Sw) estima-
tions than λ = 3 using 10 soil samples. Whether it can also estimate K
(Sw) more precisely than λ = D is still an open question. The values of
λ = D and 2(4–D) – (3–D) / (2D–3) are different conceptually and
affect K(Sw) estimations differently since as D increases from 2 to 3,
generally speaking, the value of 2(4–D) – (3–D) / (2D–3) decreases from
approximately 3 to 2, while λ = D increases similarly from 2 to 3.
Therefore, the main objective of this study is comparing
λ = 2(4–D) – (3–D) / (2D–3) with λ = D in the estimation of K(Sw)
using a large dataset i.e., 104 soil samples with various textural and
structural characteristics from the UNSODA database selected by
Ghanbarian-Alavijeh and Hunt (2012). In addition, we compare the
performance of two λ values in the unsaturated hydraulic conductivity
estimation using the Rijtema (1969) database including 20 soil samples
of variety structures and textures. We also address the effects of non-
equilibrium conditions, capillary number and flow rate as well as
uncertainties in the determination of the pore-solid fractal model
parameters β and D on K(Sw) estimations from the measured drainage
water retention curve.

2. Materials and methods

The Ghanbarian-Alavijeh and Hunt (2012) dataset includes 104 soil
samples from the UNSODA database. The salient properties of these
soils including average value of D, β, hmin as well as the number of
samples for nine soil texture classes are given in Table 1. For soil sample
distribution on the ternary diagram see Fig. 1 in Ghanbarian-Alavijeh
and Hunt (2012).

The Rijtema (1969) database consists of twenty soil samples from
high-permeability coarse sand to highly porous peat soil with various
hydraulic characteristics. In this database, soil water content and
hydraulic conductivity was measured at tensions h = 0, 2.5, 10, 31,
100, 200, 500, 2500, 16,000 and 106 cm H2O. The last measured data
point was, however, dropped out in this study due to possible
contribution of vapor transport at such a high tension. The PSF model
parameters e.g., D, β, and hmin were determined by directly fitting Eq.
(3) to the measured soil water retention curve. Following van
Genuchten (1980), we approximately set critical water saturation
equivalent to saturation at 16000 cm H2O. Table 2 presents some
physical and hydraulic characteristics of each soil sample within the
Rijtema (1969) database. The interested reader is referred to the
original Ghanbarian-Alavijeh and Hunt (2012) and Rijtema (1969)
articles for further detailed information.

In order to compare statistically the accuracy of Eq. (1) with
different λ values in the estimation of K(Sw), the root mean square
log-transformed error (RMSLE) parameter was determined as follows
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