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Due to its slow turnover rates in soil, pyrogenic carbon (PyC) is considered an important C pool and relevant to
climate change processes. Therefore, the amounts of soil PyCwere compared to environmental covariates over an
area of 327,757 km2 in the northeastern United States in order to understand the controls on PyC distribution
over large areas. Topsoil (defined as the soil A horizon, after removal of any organic horizons) samples were col-
lected at 165 field sites in a generalised random tessellation stratified design that corresponded to approximately
1 site per 1600 km2 and PyC was estimated from diffuse reflectance mid-infrared spectroscopy measurements
using a partial least-squares regression analysis in conjunction with a large database of PyC measurements
based on a solid-state 13C nuclear magnetic resonance spectroscopy technique. Three spatial models were ap-
plied to the data in order to relate critical environmental covariates to the changes in spatial density of PyC
over the landscape. Regional mean density estimates of PyC were 11.0 g kg−1 (0.84 Gg km−2) for Ordinary
Kriging, 25.8 g kg−1 (12.2 Gg km−2) for Multivariate Linear Regression, and 26.1 g kg−1 (12.4 Gg km−2) for
Bayesian RegressionKriging. Akaike Information Criterion (AIC) indicated that theMultivariate Linear Regression
model performed best (AIC = 842.6; n = 165) compared to Ordinary Kriging (AIC = 982.4) and Bayesian Re-
gression Kriging (AIC = 979.2). Soil PyC concentrations correlated well with total soil sulphur (P b 0.001; n =
165), plant tissue lignin (P = 0.003), and drainage class (P= 0.008). This suggests the opportunity of including
related environmental parameters in the spatial assessment of PyC in soils. Better estimates of the contribution of
PyC to the global carbon cycle will thus also require more accurate assessments of these covariates.

© 2017 Elsevier B.V. All rights reserved.

Keywords:
Pyrogenic carbon
Climate change
Fire
Soil development
Soil organic matter
Bayesian regression kriging

1. Introduction

Climate change has triggered an increasing interest in biogeochem-
ical carbon (C) cycling and the question of how global change affects bi-
otic processes. Recent studies suggest that the biosphere currently acts
as a C sink (Schimel et al., 2001; Pan et al., 2011). However, the sink
strength may decrease over time, turning the biosphere into a C source
(IPCC, 2014). The largest uncertainty in predicting C turnover in the ter-
restrial biosphere is the soil (Tian et al., 2015), which stores at least
three times asmuch C as either the atmosphere or terrestrial vegetation
(Friedlingstein et al., 2006; Schmidt et al., 2011). Hence, soil organic C
(SOC) is the main component of the terrestrial C cycle and accounts
for annual carbon dioxide emissions that are an order of magnitude
higher than all anthropogenic carbon dioxide emissions taken together

(IPCC, 2014). Decomposition of SOC by microorganisms is likely to in-
tensify through global warming, augmenting the release of carbon diox-
ide into the atmosphere (Davidson and Janssens, 2006). If, however, a
larger fraction of SOC were to demonstrate slower decomposition
rates than currently assumed, the soil respiration-warming feedback
may have been over estimated and current models of global climate
change would need to be revised (Lehmann et al., 2008).

Slow-cycling SOC is either protected by minerals (organo-mineral
interactions, adsorbed OC, contained in aggregates) or chemically al-
tered with a highly aromatic structure and few oxygenated functional
groups (pyrogenic carbon), which makes it a less preferred energy
source for microbial decay (Preston and Schmidt, 2006; Schmidt et al.,
2011).

While the formation of stabilized plant residues may take a multi-
tude of pathways (Kleber et al., 2007), pyrogenic carbon (PyC) is pro-
duced by partial combustion of plant material and is a major
component of a continuum from charcoal to soot to graphite
(Kuhlbusch, 1998; Schmidt and Noack, 2000; Preston and Schmidt,
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2006). Although PyC can be degraded both chemically and biologically,
it decomposes at a slow rate, withmean residence time in soils estimat-
ed from decades to millennia (Lehmann et al., 2015;Wang et al., 2015).
Therefore, it mineralizes significantly slower than other litter input
(Ansley et al., 2006), providing a greater potential for PyC to act as a sig-
nificant C sink from the more rapid bio-atmospheric C cycle to the
slower (long term) geological C cycle (Forbes et al., 2006; Ohlson and
Tryterud, 2000). Skjemstad et al. (2002) found that PyC can constitute
a significant proportion of SOC with up to 35% in several long-term ex-
periments in the United States. Despite thesefindings of the importance
of PyC, most recent C-related studies focus merely on non-PyC compo-
nents and, therefore, neglect to address the long-term environmental
significance of PyC stock changes in the global C cycle. Additionally,
most available PyC data are collected as point data without attempting
to correlate these measurements to other environmental properties of
the surrounding landscape (Murage et al., 2007). Transformational pro-
cesses and products, initially driven by climate and geomorphology, de-
fine the landscape's natural potential which influences ecosystem
characteristics, for instance the capacity to act as a C sink or source
(Blümel, 2009). In order to quantify this potential and upscale point
measurements to the landscape scale, accurate information about the
spatial distribution of PyC in soils of different ecosystems and the rela-
tionship to other environmental parameters are important to support
projections of future climate change (Lehmann et al., 2008). Conse-
quently, so as to better understand the importance of PyC in the global
C cycle, an understanding of the spatial distribution of PyC is required
(Bird et al., 2015; Reisser et al., 2016; Santín et al., 2016). To date, studies
assessing spatial patterns of PyC in soils over large areas have been
scarce,may combine PyC estimates frommany different analyses proto-
cols (Reisser et al., 2016) and often only focus on soot-derived PyC
(Shaoda et al., 2011; Paroissien et al., 2012).

Therefore, the aim of this study was to assess the amount of PyC in
topsoils of the northeastern United States, to determine the importance
of related environmental parameters in the overall distribution of PyC
on a landscape scale and to evaluate the performance of different spatial
models in predicting PyC distribution over large areas. Specifically, the
suitability of Ordinary Kriging, Multivariate Linear Regression and
Bayesian Regression Kriging was examined with the goal to obtain the
best model to depict and quantify spatial patterns of PyC distribution
in the landscape.

2. Materials and methods

2.1. Study region

The sample sites are located in the northeastern United States, a part
of the humid temperate zone, which globally covers 9.7% of the global
terrestrial landmass. Mean annual temperature ranges from 8 °C to
12 °C andmean annual precipitation from600mmto 1000mm. Rainfall
is broadly distributed throughout the year. Temperate broadleaf and
mixed forests comprise the predominant natural vegetation type. The
organic layer consists of slightly acidic to slightly alkaline mull, which
is rich in nutrients and carbon compared to the underlying mineral ho-
rizons. Both climate and vegetation control soil formation in this
ecoregion and primarily lead to the development of dystric to eutric
Cambisols, Luvisols and Podzoluvisols (Goudie, 2001; Woodward,
2003).

2.2. Sample collection and analysis

A composite of the soil A horizon (ca. 1 kg of the uppermost mineral
soil, up to 0.1 m depth for the study region, after removal of the organic
horizon if present) was collected using either soil profiles or augers at
165 sample sites in the six New England States and New York State
(Supplementary Fig. S1) as part of the U.S. Geological Survey's North
American Soil Geochemical Landscapes Project (Smith et al., 2012,

2013, 2014). No additional field information was collected at the time
of soil sampling. Additional soil and site information was obtained
from other databases (Supplementary Tables S1 and S2). Field sites
were selected using a generalised random tessellation stratified design
that corresponded to approximately 1 site per 1600 km2 (Stevens and
Olsen, 2004). This is a low sampling intensity compared to the processes
that are likely responsible for soil PyC distribution, but is a typical sam-
pling density available for large-scale spatial analyses of soils (e.g., for
Africa 1 site per 1122 km2, Hengl et al., 2015; for Europe 1 site per
199 km2, Ballabio et al., 2016). Our analyses therefore reflect assess-
ments of PyC spatial distribution, the ability to understand its drivers
and the opportunities to improve spatial interpolation using co-variates
for a data density typical of soil inventories.

The samples were air-dried, disaggregated and sieved to b2 mm.
This material was then finely ground prior to chemical analysis (Smith
et al., 2013). Adapting themethod of Briggs (2002), a USGS contract lab-
oratory determined total sulphur (S) concentration by a near-total four-
acid (hydrochloric, nitric, hydrofluoric, and perchloric) digestion at a
temperature between 125 and 150 °C followed by inductively coupled
plasma–atomic emission spectrometry (ICP-OES Optima 5300/7300,
Perkin Elmer Inc., Waltham, MA, USA).

A chemometric prediction method was used to estimate PyC con-
tents whereby mid-infrared (MIR) spectra were correlated with large
dataset of lab-produced PyC quantification from soils in Australia
(Baldock et al., 2013a, 2013b). Finely ground and homogenized samples
(Retsch Ball Mill, MM400, Haan, Germany) were analyzed by diffuse re-
flectanceMIR spectroscopy using the identical spectroscope for theAus-
tralian calibration set and the US soils presented in this study. Spectra
between 8000 and 400 cm−1 were recorded with a Nicolet 6700 FTIR
spectrometer (Thermo Fisher Scientific Inc., Waltham, MA, USA)
equipped with a KBr beam-splitter, a DTGS detector and an AutoDiff-
Automated diffuse reflectance accessory (Pike Technologies, Madison,
WI, USA). Subsequent partial least squares (PLS) regression analysis of
PyC was carried out with the Unscrambler 10.2 software package
(CAMO software AS, Oslo, Norway). In this, a standard set of 312 Austra-
lian soils, previously analyzed for PyC using HF treatment followed by
solid-state 13C nuclearmagnetic resonance (NMR) spectroscopy, served
as PLS calibration data. Test set validation indicated a root mean square
error of 0.324mg C g−1 with an R-square of 0.85 (Baldock et al., 2013b).

An outlier ratio based on Hotelling's T-squared distribution and an
inlier ratio based on the Mahalanobis distance derived using the Un-
scrambler 10.2 software (CAMO Software AS, Oslo, Norway) were ap-
plied to determine how closely our field site PyC data in the US north-
east aligned with the range of data used in the PLS calibration data set
from Australia. Under the similarity assumptions associated with the
PLS model fit to the calibration data, no more than about 5% of the cali-
bration samples should be expected to lie beyond the threshold for each
metric (i.e. having a ratio N 1). For the soils being predicted in this study,
approximately 58% were found to be beyond the Hotelling's critical
value for the outlier ratio and 8% beyond the Mahalanobis critical
value for the inlier ratio (Fig. 1), thus providing a measure of distance
between our data and the data used for the calibration. Consequently,
58% of our data lie beyond the current predictive range of this model
and prudence should be exercised in interpreting the results. One
possibility would be to down-weight the elements of the data that are
statistically beyond the base calibration data set. This might be
appropriate if the variables used for the prediction were scattered
more or less randomly outside of its range. However, this is a spatial
prediction, so sites with characteristics that lie beyond those of
the calibration data are in fact aggregated in specific regions.
Thus down-weighting or eliminating these data would leave gaps in
the prediction. Even so the predicted means are not likely to change
from those presented here, although their variance increases. Conse-
quently, for our purposes of relating PyC contents to each other and to
site variables, we assume that the established linear relationship is
appropriate.
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