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a b s t r a c t

A computational approach is presented for steady Dupuit interface flow where the aquifer extends below
the sea. A detailed approach is outlined to determine the head at the coastline so that the solution below
the leaky seabed may be combined with any type of steady Dupuit interface flow in the aquifer below the
land. The method allows for any inland boundary condition including specified head and specified flux;
cases of freshwater lenses caused by infiltration are also considered. The approach is implemented in a
Python script and a Jupyter Notebook.
� 2017 The Authors. Published by Elsevier B.V. This is anopenaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

This Technical Note concerns analytic solutions for one-
dimensional steady Dupuit interface flow in coastal aquifers where
the aquifer extends below the sea. The sea is separated from the
aquifer by a leaky seabed. A variety of solutions have been pub-
lished for steady interface flow where the aquifer extends below
the sea (e.g., Edelman, 1972; Bruggeman, 1999; Kooi and Groen,
2001; Morgan et al., 2015). Sikkema and van Dam (1982) provided
a detailed mathematical treatment, which was used by Bakker
(2006) to derive a complete set of analytic solutions for the case
where flow in the aquifer below the land is confined and uniform.
Evaluation of the solution by Bakker (2006) is complicated. It
requires determination of the type of flow (four types are distin-
guished), and when the tip of the interface reaches the end of
the seabed, the solution requires evaluation of elliptic integrals
and an iterative approach to determine parameters.

This Technical Note is, in part, a response to the recent calls for
reproducibility in computational hydrology (Fienen and Bakker,
2016; Hutton et al., 2016; Barba, 2016), where a case is made that
computational results cannot be reproduced or scrutinized when
the source code is not available. Here, a cookbook recipe is pro-
vided for the evaluation of the part of the solution of Bakker

(2006) in the aquifer below the sea. The solution below the sea
can be coupled to any type of flow in the aquifer below the land,
which may be simulated with, e.g., the Strack potential (Strack,
1976). The recipe is implemented in a Python computer program
and combined with several options for the boundary conditions
in the aquifer below the land. A Jupyter Notebook is developed
to evaluate the position of the interface for a variety of cases. A
Jupyter Notebook is an interactive document that integrates text,
computer code, and results (Kluyver et al., 2016). The Python code
and Jupyter Notebook are available from Bakker (2017).

2. Solution below the sea bottom

Consider one-dimensional steady Dupuit interface flow in a ver-
tical cross-section (Fig. 1). The aquifer extends below the sea and
the saltwater is at rest. The depth of the interface may be obtained
from the head in the aquifer with the Ghijben–Herzberg equation.

Below the sea, the aquifer is bounded on top by a leaky layer
separating the sea from the aquifer, so that flow is semi-
confined. In cases where the leaky seabed is absent, the leaky layer
represents the vertical resistance to flow of the aquifer (Anderson,
2005; Bakker, 2014). The leakage through the leaky layer is
approximated as vertical and computed as

qz ¼
h� hs

c
ð1Þ
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where qz [L/T] is the vertical component of the specific discharge
vector through the leaky layer, h is the freshwater head in the aqui-
fer, hs is the freshwater head equivalent to the hydrostatic pressure
in the saltwater at the top of the aquifer, and c [T] is the resistance
to vertical flow of the leaky layer. The resistance c is computed from
the thickness D and vertical hydraulic conductivity kv of the leaky
seabed as c ¼ D=kv . In absence of a physical leaky layer, the resis-
tance c represents the resistance to vertical flow of the aquifer
(Bakker, 2014). The leaky layer may have a finite length Ls or an infi-
nite length. The hydraulic conductivity of the aquifer is k [L/T] and
the thickness is H. The leakage factor k [L] is defined as

k ¼
ffiffiffiffiffiffiffiffiffi
kHc

p
ð2Þ

The dimensionless density difference ms is defined as

ms ¼
qs � qf

qf
ð3Þ

where qf and qs are the densities of freshwater and saltwater,
respectively. The main parameters of the problem are summarized
in Table 1.

The flow in the aquifer below the land is not specified at this
point. The discharge crossing the shoreline is called Q0 [L2/T], but
is often unknown prior to solving the problem. Separate solutions
are used for flow in the aquifer below the sea and for flow in the
aquifer below the land. First, solutions are presented for flow
below the sea, which result in equations for the head in the aquifer
at the shoreline in terms of Q0. A procedure to determine Q0 from
onshore boundary conditions is presented in a separate section.
The shoreline is located at x ¼ 0 (Fig. 1).

Equations are presented in terms of dimensionless variables.
The dimensionless head / is defined as

/ ¼ h� hs

msH
ð4Þ

The dimensionless head as a function of the dimensionless
coordinate x=k is governed by two dimensionless parameters,
Ls=k and l, where the latter is defined as

l ¼ Q0k

kH2ms
ð5Þ

Note that dimensionless parameter l is a combination of the
discharge Q0 crossing the shoreline, the aquifer parameters, and
the dimensionless density difference ms.

Four different types of flow are distinguished depending on the
position of the tip and the toe of the interface. The tip of the inter-
face is the location where the interface touches the top of the aqui-
fer, while the toe of the interface is the location where the interface
touches the bottom of the aquifer (Fig. 1). For type I, the toe of the
interface is in the aquifer below the land and the tip of the inter-
face does not reach the end of the semi-confined layer (Fig. 2a).
For type II, the toe of the interface is in the aquifer below the sea
and the tip of the interface does not reach the end of the semi-
confined layer (Fig. 2b). For type III, the toe of the interface is in
the aquifer below the land, and the tip of the interface is at the
end of the semi-confined layer (Fig. 2c). For type IV, the toe of
the interface is in the aquifer below the sea and the tip of the inter-
face is at the end of the semi-confined layer (Fig. 2d).

The type of flow is a function of Ls=k and the dimensionless
parameter l (Eq. (5)), which includes the discharge Q0 crossing
the shoreline. For example, when flow is of type I (Fig. 2a) and
the discharge Q0 increases, the toe of the interface moves towards
the shoreline. If Q0 is large enough, the toe will cross the shoreline
(type II flow). The limiting case for which the toe is exactly at the
shoreline is reached when l ¼ ffiffiffiffiffiffiffiffi

2=3
p

, as derived by Bakker (2006).
In the following, a cookbook recipe is presented to determine

the type of flow. An outline of the cookbook recipe is given in
Fig. 3. Equations are given for the dimensionless head /0 at the
shoreline and the length L of the outflow face for the different flow
types. All equations are taken from Bakker (2006), where a detailed
derivation is given. Following the recipe (Fig. 3), the first step is to
compute the dimensionless parameter l. The flow is of type I if
l <

ffiffiffiffiffiffiffiffi
2=3

p
(and the length of the semi-confining layer is long

enough, which will be checked later), and the dimensionless head
/0 at the shoreline can be computed as

/0 ¼ 3l2

2

� �1=3

ð6Þ

The length of the outflow face L is

L ¼ ð18lÞ1=3k ð7Þ
The flow is of type II if lP

ffiffiffiffiffiffiffiffi
2=3

p
(and the length of the semi-

confining layer is long enough), and /0 and L can be computed as

/0 ¼ 1� ffiffiffiffiffiffiffiffi
2=3

p
2

expð�d=kÞ þ 1þ ffiffiffiffiffiffiffiffi
2=3

p
2

expðd=kÞ ð8Þ

L ¼ k
ffiffiffi
6

p
þ d ð9Þ

where

d ¼ k ln
lþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1=3

p
1þ ffiffiffiffiffiffiffiffi

2=3
p

" #
ð10Þ

Next, it is checked whether the length of the semi-confining
layer at the bottom of the sea is longer than the computed length
of the outflow face L. If it is not longer, then the flow is of type III or
IV. The calculations for type III and IV flow are more involved. First,
the value of the parameter at must be determined from the follow-
ing equality:ffiffiffiffiffiffiffiffiffiffiffiffiffi
3at=2

p
½fð1; atÞ � fð0; atÞ� þ Ls=k ¼ 0 ð11Þ

where

fð/; aÞ ¼ ð3�1=4 � 31=4ÞFðh;jÞ þ 2 � 31=4Eðh;jÞ

� 2 � 31=4 sin h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j2 sin2 h

p
1þ cos h

ð12Þ

Table 1
Main parameters of the problem.

Symbol Parameter Dimensions

k Hydraulic conductivity L/T
H Aquifer thickness L
qf Density of freshwater M/L3

qs Density of saltwater M/L3

c Resistance to vertical flow of leaky seabed T
Ls Length of leaky seabed L
hs Sea level L

Fig. 1. Schematic cross-section of interface flow in an aquifer that extends below
the sea. This example shows unconfined flow in the aquifer below the land.
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