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s u m m a r y

Transient age distributions have received relatively little attention in the literature over the years
compared to their steady-state counterparts. All natural systems are transient given enough time and
it is becoming increasingly clear that understanding these effects and how they deviate from steady
conditions will be important in the future. This article provides a high-level overview of the equations,
techniques, and challenges encountered when considering transient age distributions. The age distribu-
tion represents the amount of water in a sample belonging to a particular age and the transient case
implies that sampling the same location at two different times will result in different age distributions.
These changes may be caused by transience in the boundary conditions, forcings (inputs), or physical
changes in the geometry of the flow system. The governing equation for these problems contains separate
dimensions for age and time and its solutions are more involved than the solute transport or steady-state
age equations. Despite the complexity, many solutions have been derived for simplified, but transient,
approximations and several numerical techniques exist for modeling more complex transient age
distributions. This paper presents an overview of the existing solutions and contributes new examples
of transient characteristic solutions and transient particle tracking simulations. The limitations for apply-
ing the techniques described herein are no longer theoretical or technological, but are now dominated by
uncertainty in the physical properties of the flow systems and the lack of data for the historic inputs.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Despite decades of research, relatively few studies have
expressly considered transient age distributions in subsurface
hydrologic systems (Nir, 1973; Rodhe et al., 1996; Ozyurt and
Bayari, 2005). Transience is ubiquitous in nature and every aspect
of a system will change given enough time, including the age of the
water. As with most of hydrology, the methods for describing age
began as simple analytical models that approximate physical pro-
cesses (e.g. Maloszewski and Zuber, 1982). A common, preliminary
assumption throughout subsurface hydrology has been that a flow
system occupies a steady-state, which simplifies the solution of the
governing partial differential equations. These simple models
guided the development of more complex models and numerical
tools that allowed investigation of transient processes such as
groundwater recharge and solute transport, but the steady-state
assumption remains prevalent in many disciplines when consider-
ing age (McGuire and McDonnell, 2006). Curiously, the assumption
has persisted without much quantitative investigation of the

conditions for its validity. Recently, the subject of transient age
has become more prevalent in groundwater (Woolfenden and
Ginn, 2009; Cornaton, 2012; Gomez and Wilson, 2013), hillslope
(Fiori and Russo, 2008; Duffy, 2010; Fiori, 2012; Ali et al., 2014)
and catchment (Botter et al., 2011; Benettin et al., 2013) studies.
Many of these studies used relaxation methods or transfer func-
tions but this ignores the spatial redistribution of the water mass,
which is itself a transient process. However, even these modeling
techniques suggest that the role of transience can be significant.

Transience is not foreign to hydrology but the question of water
age under transient conditions presents some unique conceptual
and mathematical challenges. Many of these challenges arise due
to a general lack of understanding about the relevant concepts
and the most basic is that the age of any sample of water is a dis-
tribution. Here, age is defined as the elapsed time that a discrete
volume (parcel) of water has been in a hydrologic system. Specifics
of ‘‘the system” and its boundaries give rise to the many definitions
of age in the literature, but the basic concept is the same in each
application. Physical heterogeneities in the flow properties of a
system, variability in the timing and spatial distribution of inputs,
and a multitude of other factors create numerous pathways,
moving at different speeds, that waters may take through the flow
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system. These different flow paths interact with each other and
mix, creating a distribution of age. Naturally, if those processes
change over time this will affect the age distribution so water col-
lected from the same location at two different times might come
from two different sources. The mathematical formalization of
these concepts is admittedly more complicated. However, there
have been advances in the age and residence time communities
that allow both simplified and more robust solutions of transient
age distributions for some cases.

To date, there are few articles that have dealt with the mechan-
ics of transient age distributions. The authors believe that this is
partially due to the unfamiliar form of the governing equations
to a general audience and the counterintuitive nature of some of
the associated concepts. This article is intended to shed some light
on these unfamiliar constructions and, when possible, demonstrate
their similarities to more familiar problems. Our goal is to provide
an overview of the current state of modeling transient age distribu-
tions that should be accessible to a broad audience. A brief review
of the background and governing equations is presented but much
of our focus is on examples of the existing techniques and two new
approaches. Most of our examples come from the work done on
groundwater systems, reflecting our own backgrounds, but the
concepts and solution techniques are independent of any particu-
lar model for the fluid velocity and are equally applicable to any
fluid flow. The first examples are analytical and designed to con-
tain as many similarities to the more familiar solute transport
equations as possible, since similar techniques can be applied to
both. The complexity of the problem is then increased and we shift
our discussion to the application of solution techniques and offer
some thoughts on promising avenues for future work.

2. Background

A detailed background on the derivation of the age equation can
be found in a companion article in this same volume. Readers
requiring more background are referred there, as well as to Ginn
(1999), Cornaton and Perrochet (2006), and Ginn et al. (2009), as
the background material here will be less technical.

2.1. Governing equation

The various transient age equations are all almost entirely
encompassed within the original derivation of Ginn (1999). For a
single component, the governing equation of the aqueous phase
mass density over space, time, and age is:

@q
@t

þ @q
@a

þr � Vq�r � Drq ¼ F ð1Þ

where q ¼ qðx; t; aÞ is the mass density of the fluid, x is a position
vector, t and a denote time and age coordinates, respectively,
V ¼ Vðx; tÞ is the vector field of velocity, D ¼ Dðx; tÞ is a tensor field
of hydrodynamic dispersion coefficients, and F is a source/sink/reac-
tion term that can be used to represent a wide range of processes.
Both V and D may vary spatially and temporally but neither is a
function of age; transience changes the speed that water moves
through a system, which in turn effects dispersion, but not the
‘‘age velocity.” Dispersion does not occur in the time or age dimen-
sions, only in the spatial dimensions. By definition, steady-state age
distributions occur when there is a dynamic equilibrium in the age
of the water molecules flowing past a fixed point in space. The tran-
sient case might mean that older water is being displaced by
younger water and that their relative fractions are changing. In
many cases this suggests that sources are transient; for example,
flow paths that may be cutoff under dry conditions can be recon-
nected given a large enough event, providing an influx of young
water.

Several other forms of the age equation are often encountered
in the literature. These include Goode (1996), Delhez et al.
(1999), and Duffy (2010), who present mass balance approaches
for simulating the mean age in groundwater, oceans and catch-
ments, respectively. Other forms of the age equation exist and this
is not intended to be a complete list since that would be excessive
for our purposes. The important point is that nearly every deriva-
tion or application of an age equation has assumed a steady-state
flow system prior to solving the age equation. The list of studies
that have done the opposite is short and those references may be
found in the later sections of this article. However, one final, note-
worthy variant of an age distribution is the integrated response
model, such as Botter et al. (2011), which has been compared to
Eq. (1) by Benettin et al. (2013). These models are common in
catchment hydrology and seek to address the difficulty in applying
physically-based advection–dispersion models by simplifying the
system to the point where it is treated as a single reservoir. The
outflow rate from the reservoir is considered as a function of age
and a series of relaxation equations are applied to an initial condi-
tion to distribute age in the effluent, or the ‘‘age export” from the
system. Probability density functions and cumulative distributions
can be considered in these kinds of approaches but the main point
is that they do not directly model the physical redistribution of
water within the system. Our focus is on physically based models
so we do not consider these methods further.

Most models for age can be related to (1), usually by volume
averaging, and several equivalences are explained by Ginn et al.
(2009). However, simulated and observed age distributions may
deviate from solutions of (1) because important heterogeneities
may have been omitted from the upscaled model. This can result
in the system having ‘‘memory” or otherwise falling into the class
of a non-Fickian equation. One example of a non-Fickian age equa-
tion is:

@aq
@ta

þ @aq
@aa

þr � Vq�r � Drq ¼ 0 ð2Þ

where @a denotes the Riemann–Liouville fractional derivative and a
is the order of fractional differentiation, which recovers the classical
equation when a ¼ 1. Eq. (2) is nonlocal in time and age, but a space
nonlocal or fully nonlocal form can also be written following the
solute transport literature. The non-Fickian age equation was sug-
gested by Ginn (1999) and derived by Engdahl et al. (2012) in an
effort to describe the expected dynamics of systems that deviate
from (1). The deviations in question typically arise due to unre-
solved heterogeneities in the velocity field or multi-domain mass
transfer into stagnant regions. Nonlocal equations are more difficult
to solve than their local counterparts and there is no work to date
involving transient, direct solutions of non-Fickian age equations.
As such, our discussion of them will end here but the solutions of
these non-local equations can produce a wide range of solutions
that can otherwise only be generated by highly resolved, distributed
parameter models.

The reason for bringing up equations like (2) is that transient
solutions of Eq. (1) will take on different forms than those often
seen in the literature for steady-state age distributions. The same
is true for 1-D and 2-D variations of (1) compared to their respec-
tive steady-state approximations. One might call such deviations
non-Fickian, but this is not strictly correct since the mechanism
describing the flux in (1) is Fickian, whereas the flux in (2) is not.
For example, distributed parameter models can easily create situ-
ations where the age distributions do not fit a simplified 1-D ana-
lytical model that assumes a Fickian model of dispersion (Engdahl
et al., 2012). This represents a violation of the assumptions of the
1-D model, not a breakdown of Fickian behavior in the distributed
model. Thus, many ‘‘non-Fickian” behaviors are due to a lack of
characterization and represent a deficiency in an upscaled or
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