On a dynamical local-global principle in Mordell-Weil type groups

Stefan Barańczuk
Faculty of Mathematics and Computer Science, Adam Mickiewicz University, ul. Umultowska 87, Poznań, Poland

Received 4 December 2015; received in revised form 6 June 2016

Abstract

In this paper we consider certain dynamical local-global principle for Mordell-Weil type groups over number fields like S-units, abelian varieties with trivial ring of endomorphisms and odd algebraic K-theory groups. (c) 2016 Elsevier GmbH . All rights reserved.

MSC 2010: primary 37P55; secondary 11G10; 11R70
Keywords: Reduction maps; Abelian varieties; K-theory groups

1. Introduction

The mathematical theory of dynamical systems studies, given a set S and a map $\phi: S \rightarrow S$ mapping the set S to itself, the behaviour of the iterates of the map ϕ,

$$
\phi^{n}=\underbrace{\phi \circ \ldots \circ \phi}_{n \text { times }},
$$

in particular, for given $s \in S$, the behaviour of the orbit of s, i.e. the set

$$
\mathcal{O}_{\phi}(s)=\left\{\phi^{n}(s): n \geq 0\right\}
$$

If S is equipped with a group structure then we might consider only those ϕ 's that are endomorphisms. In this note we investigate the following groups of number-theoretic interest:

[^0]http://dx.doi.org/10.1016/j.exmath.2016.07.001
0723-0869/(C) 2016 Elsevier GmbH. All rights reserved.

ARTICLE IN PRESS

1. $R_{F, S}^{\times}, S$-units groups, where F is a number field and S is a finite set of ideals in the ring of integers R_{F},
2. $A(F)$, Mordell-Weil groups of abelian varieties over number fields F with $\operatorname{End}_{\bar{F}}(A)=$ \mathbb{Z},
3. $K_{2 n+1}(F), n>0$, odd algebraic K-theory groups.

To deal with them it is enough for us to introduce the following abstract nonsense axiomatic setup:

Let B be an abelian group and $r_{v}: B \rightarrow B_{v}$ be an infinite family of groups homomorphisms whose targets B_{v} are finite abelian groups. We will use the following notation:

```
\(P \bmod v \quad\) denotes \(r_{v}(P)\) for \(P \in B\)
\(P=Q \bmod v \quad\) means \(r_{v}(P)=r_{v}(Q)\) for \(P, Q \in B\)
\(\Lambda_{\text {tors }} \quad\) the torsion part of a subgroup \(\Lambda<B\)
ord \(T \quad\) the order of a torsion point \(T \in B\)
\(\operatorname{ord}_{v} P \quad\) the order of a point \(P \bmod v\)
\(l^{k} \| n \quad\) means that \(l^{k}\) exactly divides \(n\), i.e. \(l^{k} \mid n\) and \(l^{k+1} \nmid n\) where \(l\) is a
    prime number, \(k\) a nonnegative integer and \(n\) a natural number.
```

We impose the following two assumptions on the family $r_{v}: B \rightarrow B_{v}$:
Assumptions. 1. Let l be a prime number, $\left(k_{1}, \ldots, k_{m}\right)$ a sequence of nonnegative integers. If $P_{1}, \ldots, P_{m} \in B$ are points linearly independent over \mathbb{Z}, then there is an infinite family of primes v in F such that $l^{k_{i}} \| \operatorname{ord}_{v} P_{i}$ if $k_{i}>0$ and $l \nmid \operatorname{ord}_{v} P_{i}$ if $k_{i}=0$.
2. For almost all v the map $B_{\text {tors }} \rightarrow B_{v}$ is injective.
(For the families of groups we described above the axioms are valid, in particular Assumption 1 is fulfilled by [5, Theorem 5.1], and Assumption 2 by [2, Lemma 3.11]. The validity of the technical hypothesis ${ }^{1}$ from the first sentence of Theorem 5.1 in [5] is clear in the K-theory groups case (resp. $R_{F, S}^{\times}$case) since here ρ_{l} is simply one-dimensional representation given by the $(n+1)$ th tensor power of cyclotomic character (resp. by cyclotomic character); in abelian varieties case it is asserted by Corollary 1 in [8].)

In this short note we prove the following theorem, inspired by Joseph Silverman's question stated in his private communications with Grzegorz Banaszak:

Theorem. Let Λ be a subgroup of $B, P \in B$ be a point of infinite order and ϕ be a natural number. Then the following are equivalent:

- For almost every v

$$
\begin{equation*}
\mathcal{O}_{\phi}(P \bmod v) \cap \Lambda \bmod v \neq \emptyset \tag{1}
\end{equation*}
$$

- $\mathcal{O}_{\phi}(P) \cap \Lambda \neq \emptyset$.
where $\phi^{k} P$ means multiplying P by integer ϕ^{k}; notice that the maps given by multiplication by integers are endomorphisms, thus indeed we deal here with iterates of endomorphisms mentioned at the beginning of the introduction. For $\phi=1$ the statement of the

[^1]
https://daneshyari.com/en/article/5771514

Download Persian Version:

https://daneshyari.com/article/5771514

Daneshyari.com

[^0]: E-mail address: stefbar@amu.edu.pl.

[^1]: ${ }^{1}$ Note the misprint in its formulation: $\rho\left(G_{F}\right)$ should read $\rho_{l}\left(G_{F}\right)$.

