The second largest number of points on plane curves over finite fields

Masaaki Homma ${ }^{\text {a }}$, Seon Jeong Kim ${ }^{\text {b,* }}$
${ }^{\text {a }}$ Department of Mathematics and Physics, Kanagawa University, Hiratsuka 259-1293, Japan
${ }^{\text {b }}$ Department of Mathematics and RINS, Gyeongsang National University, Jinju 660-701, Republic of Korea

A R T I C L E I N F O

Article history:

Received 15 September 2015
Received in revised form 30 August 2017
Accepted 15 September 2017
Available online xxxx
Communicated by James W.P.
Hirschfeld

MSC:

11G20
13F20
14G15
14N05
Keywords:
Finite field
Basis of the ideal
Plane curve

A B S T R A C T

A basis of the ideal of the complement of a linear subspace in a projective space over a finite field is given. As an application, the second largest number of points of plane curves of degree d over the finite field of q elements is also given for $d \geq q+1$. © 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Let C be a curve of degree d in the projective plane \mathbb{P}^{2} with the homogeneous coordinate X, Y, Z defined over the finite field \mathbb{F}_{q} of q elements, which has no \mathbb{F}_{q}-line components, and $F(X, Y, Z)$ a homogeneous polynomial in $\mathbb{F}_{q}[X, Y, Z]$ which defines the curve C. We are interested in the set

$$
C\left(\mathbb{F}_{q}\right):=\left\{(a, b, c) \in \mathbb{P}^{2}\left(\mathbb{F}_{q}\right) \mid F(a, b, c)=0\right\}
$$

where $\mathbb{P}^{2}\left(\mathbb{F}_{q}\right)$ denotes the set of \mathbb{F}_{q}-points of \mathbb{P}^{2}. The number of $C\left(\mathbb{F}_{q}\right)$ is denoted by $N_{q}(C)$.

The study of $N_{q}(C)$ has long history, and several upper bonds for $N_{q}(C)$ under a fixed degree d are known, e.g., the Hasse-Weil bound, the Stöhr-Voloch bound for Frobenius classical/non-classical curves. One can consult [1] for those known results.

We proved the Sziklai bound recently in the series of papers [2-4], which says that
$N_{q}(C) \leq(d-1) q+1$ unless C is a curve over \mathbb{F}_{4} which is projectively equivalent to the curve defined by

$$
(X+Y+Z)^{4}+(X Y+Y Z+Z X)^{2}+X Y Z(X+Y+Z)=0
$$

over \mathbb{F}_{4}.

In order to give a brief explanation of what we will do, we should explain some notation.

Notation 1.1. The number of points of $\mathbb{P}^{n}\left(\mathbb{F}_{q}\right)$ is denoted by $\theta_{q}(n)$, that is,

$$
\theta_{q}(n)=q^{n}+\cdots+q+1=\frac{q^{n+1}-1}{q-1}
$$

Let x_{0}, \ldots, x_{n} be coordinates of \mathbb{P}^{n}, and f_{1}, \ldots, f_{n} homogeneous polynomials over \mathbb{F}_{q}. The algebraic set in \mathbb{P}^{n} over the algebraic closure of \mathbb{F}_{q} defined by equations $f_{1}=\cdots=$ $f_{n}=0$ is frequently denoted by $\left\{f_{1}=\cdots=f_{n}=0\right\}$.

Here we summarize symbols related to plane curves, which are used in this paper, and also agree with those in [5].

- $\mathcal{C}_{d}\left(\mathbb{F}_{q}\right)$: the set of plane curves of degree d over \mathbb{F}_{q} without \mathbb{F}_{q}-linear components
- $\mathcal{C}_{d}^{i}\left(\mathbb{F}_{q}\right):=\left\{C \in \mathcal{C}_{d}\left(\mathbb{F}_{q}\right) \mid \mathrm{C}\right.$ is absolutely irreducible $\}$
- $\mathcal{C}_{d}^{s}\left(\mathbb{F}_{q}\right):=\left\{C \in \mathcal{C}_{d}\left(\mathbb{F}_{q}\right) \mid \mathrm{C}\right.$ is nonsingular $\}$
- $M_{q}(d)=\max \left\{N_{q}(C) \mid C \in \mathcal{C}_{d}\left(\mathbb{F}_{q}\right)\right\}$
- $M_{q}^{i}(d)=\max \left\{N_{q}(C) \mid C \in \mathcal{C}_{d}^{i}\left(\mathbb{F}_{q}\right)\right\}$
- $M_{q}^{s}(d)=\max \left\{N_{q}(C) \mid C \in \mathcal{C}_{d}^{s}\left(\mathbb{F}_{q}\right)\right\}$

https://daneshyari.com/en/article/5771536

Download Persian Version:

https://daneshyari.com/article/5771536

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: homma@kanagawa-u.ac.jp (M. Homma), skim@gnu.kr (S.J. Kim).

