

Contents lists available at ScienceDirect

Finite Fields and Their Applications

www.elsevier.com/locate/ffa

The second largest number of points on plane curves over finite fields

Masaaki Homma^a, Seon Jeong Kim^{b,*}

^a Department of Mathematics and Physics, Kanagawa University, Hiratsuka
259-1293, Japan
^b Department of Mathematics and RINS, Gyeongsang National University, Jinju
660-701, Republic of Korea

A R T I C L E I N F O

Article history: Received 15 September 2015 Received in revised form 30 August 2017 Accepted 15 September 2017 Available online xxxx Communicated by James W.P. Hirschfeld

MSC: 11G20 13F20 14G15 14N05

Keywords: Finite field Basis of the ideal Plane curve

ABSTRACT

A basis of the ideal of the complement of a linear subspace in a projective space over a finite field is given. As an application, the second largest number of points of plane curves of degree d over the finite field of q elements is also given for $d \ge q + 1$. © 2017 Elsevier Inc. All rights reserved.

* Corresponding author. E-mail addresses: homma@kanagawa-u.ac.jp (M. Homma), skim@gnu.kr (S.J. Kim).

http://dx.doi.org/10.1016/j.ffa.2017.09.007 1071-5797/© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let C be a curve of degree d in the projective plane \mathbb{P}^2 with the homogeneous coordinate X, Y, Z defined over the finite field \mathbb{F}_q of q elements, which has no \mathbb{F}_q -line components, and F(X, Y, Z) a homogeneous polynomial in $\mathbb{F}_q[X, Y, Z]$ which defines the curve C. We are interested in the set

$$C(\mathbb{F}_q) := \{ (a, b, c) \in \mathbb{P}^2(\mathbb{F}_q) \mid F(a, b, c) = 0 \},\$$

where $\mathbb{P}^2(\mathbb{F}_q)$ denotes the set of \mathbb{F}_q -points of \mathbb{P}^2 . The number of $C(\mathbb{F}_q)$ is denoted by $N_q(C)$.

The study of $N_q(C)$ has long history, and several upper bonds for $N_q(C)$ under a fixed degree d are known, e.g., the Hasse–Weil bound, the Stöhr–Voloch bound for Frobenius classical/non-classical curves. One can consult [1] for those known results.

We proved the Sziklai bound recently in the series of papers [2-4], which says that

 $N_q(C) \leq (d-1)q + 1$ unless C is a curve over \mathbb{F}_4 which is projectively equivalent to the curve defined by

 $(X + Y + Z)^{4} + (XY + YZ + ZX)^{2} + XYZ(X + Y + Z) = 0$

over \mathbb{F}_4 .

In order to give a brief explanation of what we will do, we should explain some notation.

Notation 1.1. The number of points of $\mathbb{P}^n(\mathbb{F}_q)$ is denoted by $\theta_q(n)$, that is,

$$\theta_q(n) = q^n + \dots + q + 1 = \frac{q^{n+1} - 1}{q - 1}.$$

Let x_0, \ldots, x_n be coordinates of \mathbb{P}^n , and f_1, \ldots, f_n homogeneous polynomials over \mathbb{F}_q . The algebraic set in \mathbb{P}^n over the algebraic closure of \mathbb{F}_q defined by equations $f_1 = \cdots = f_n = 0$ is frequently denoted by $\{f_1 = \cdots = f_n = 0\}$.

Here we summarize symbols related to plane curves, which are used in this paper, and also agree with those in [5].

- $\mathcal{C}_d(\mathbb{F}_q)$: the set of plane curves of degree d over \mathbb{F}_q without \mathbb{F}_q -linear components
- $\mathcal{C}^i_d(\mathbb{F}_q) := \{ C \in \mathcal{C}_d(\mathbb{F}_q) \mid C \text{ is absolutely irreducible} \}$
- $\mathcal{C}^s_d(\mathbb{F}_q) := \{ C \in \mathcal{C}_d(\mathbb{F}_q) \mid C \text{ is nonsingular} \}$
- $M_q(d) = \max\{N_q(C) \mid C \in \mathcal{C}_d(\mathbb{F}_q)\}$
- $M_q^i(d) = \max\{N_q(C) \mid C \in \mathcal{C}_d^i(\mathbb{F}_q)\}$
- $M_q^s(d) = \max\{N_q(C) \mid C \in \mathcal{C}_d^s(\mathbb{F}_q)\}$

Download English Version:

https://daneshyari.com/en/article/5771536

Download Persian Version:

https://daneshyari.com/article/5771536

Daneshyari.com