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On finite groups admitting
automorphisms with nilpotent centralizers

Emerson de Melo and Jhone Caldeira

Abstract. Let p be a prime. Let A be a finite group and M be a
normal subgroup of A such that all elements in A \M have order
p. Suppose that A acts on a finite p′-group G in such a way that
CG(M) = 1. We show that if CG(x) is nilpotent for any x ∈ A\M ,
then G is nilpotent. It is also proved that if A is a p-group and
CG(x) is nilpotent of class at most c for any x ∈ A \M , then the
nilpotency class of G is bounded solely in terms of c and |A|.

1. Introduction

An automorphism α of a group M is called a splitting automor-
phism of order n if

αn = 1 and x · xα · xα2 · · · xαn−1

= 1

for all x ∈ M . It is well-known that a fixed-point-free automorphism
of a finite group is a splitting automorphism. In fact the concept of
splitting automorphism can be considered as a generalization of fixed-
point-free action. Kegel [7] proved that a finite group with a splitting
automorphism of prime order is nilpotent. Clearly, this is a general-
ization of Thompson’s theorem about finite groups admitting a fixed-
point-free automorphism of prime order [14].

Let A be a finite group and M be a normal subgroup of A. Assume
that all elements in A\M have prime order p. Then using the identity

x · xα · xα2 · · · xαp−1

= (xα−1)pαp,
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