Normal Sally modules of rank one

Tran Thi Phuong ${ }^{1}$
Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Viet Nam

A R T I C L E I N F O

Article history:

Received 18 November 2015
Available online 5 October 2017
Communicated by Kazuhiko Kurano
Dedicated to Professor Shiro Goto on the occasion of his 70th birthday

MSC:

13A30
13B22
13B24
13B30
13D40
13E05
13 H 10

Keywords:

Hilbert functions
Hilbert coefficients
Associated graded rings
Rees algebras
Sally modules
Normal filtrations
Serre condition

A B S T R A C T

In this paper, we explore the structure of the normal Sally modules of rank one with respect to an \mathfrak{m}-primary ideal in a Nagata reduced local ring R which is not necessary CohenMacaulay. As an application of this result, when the base ring is Cohen-Macaulay analytically unramified, the extremal bound on the first normal Hilbert coefficient leads to the depth of the associated graded rings $\overline{\mathcal{G}}$ with respect to a normal filtration is at least $\operatorname{dim} R-1$ and $\overline{\mathcal{G}}$ turns in to Cohen-Macaulay when the third normal Hilbert coefficient is vanished.
© 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

Throughout this paper, let R be an analytically unramified Noetherian local ring with the maximal ideal \mathfrak{m} and $d=\operatorname{dim} R>0$. Let I be an \mathfrak{m}-primary ideal of R and suppose that I contains a parameter ideal $Q=\left(a_{1}, a_{2}, \ldots, a_{d}\right)$ of R as a reduction. Let $\ell_{R}(M)$ denote the length of an R-module M and $\overline{I^{n+1}}$ denote the integral closure of I^{n+1} for each $n \geq 0$. Since R is an analytically unramified, there are integers $\left\{\overline{\mathrm{e}_{i}}(I)\right\}_{0 \leq i \leq d}$ such that the equality

$$
\ell_{R}\left(R / \overline{I^{n+1}}\right)=\overline{\mathrm{e}_{0}}(I)\binom{n+d}{d}-\overline{\mathrm{e}_{1}}(I)\binom{n+d-1}{d-1}+\ldots+(-1)^{d} \overline{\mathrm{e}_{d}}(I)
$$

holds true for all integers $n \gg 0$, which we call the normal Hilbert coefficients of R with respect to I. We will denote by $\left\{\mathrm{e}_{i}(I)\right\}_{0 \leq i \leq d}$ the ordinary Hilbert coefficients of R with respect to I. Let

$$
\mathcal{R}=\mathrm{R}(I):=R[I t] \text { and } T=\mathrm{R}(Q):=R[Q t] \subseteq R[t]
$$

denote, respectively, the Rees algebra of I and Q, where t stands for an indeterminate over R. Let

$$
\mathcal{R}^{\prime}=\mathrm{R}^{\prime}(I):=R\left[I t, t^{-1}\right] \text { and } \mathcal{G}=\mathcal{G}(I):=\mathcal{R}^{\prime} / t^{-1} \mathcal{R}^{\prime} \cong \oplus_{n \geq 0} I^{n} / I^{n+1}
$$

denote, respectively, the extended Rees algebra of I and the associated graded ring of R with respect to I. Let $\overline{\mathcal{R}}$ denote the integral closure of \mathcal{R} in $R[t]$ and $\overline{\mathcal{G}}=\oplus_{n \geq 0} \overline{I^{n}} / \overline{I^{n+1}}$ denote the associated graded ring of the normal filtration $\left\{\overline{I^{n}}\right\}_{n \in \mathbb{Z}}$. Then $\overline{\mathcal{R}}=\oplus_{n \geq 0} \overline{I^{n}} t^{n}$ and $\overline{\mathcal{R}}$ is a module-finite extension of \mathcal{R} since R is analytically unramified (see [14, Corollary 9.2.1]). For the reduction Q of I, the reduction number of $\left\{\overline{I^{n}}\right\}_{n \in \mathbb{Z}}$ with respect to Q is defined by

$$
r_{Q}\left(\left\{\overline{I^{n}}\right\}_{n \in \mathbb{Z}}\right)=\min \left\{r \in \mathbb{Z} \mid \overline{I^{n+1}}=Q \overline{I^{n}}, \text { for all } n \geq r\right\}
$$

The notion of Sally modules of normal filtrations was introduced by [1] in order to find the relationship between a bound on the first normal Hilbert coefficients $\overline{\mathrm{e}_{1}}(I)$ and the depth of $\overline{\mathcal{G}}$ when R in an analytically unramified Cohen-Macaulay rings R. Following [1], we generalize the definition of normal Sally modules to the non-Cohen-Macaulay cases, and we define the normal Sally modules $\bar{S}=\bar{S}_{Q}(I)$ of I with respect to a minimal reduction Q to be the cokernel of the following exact sequence

$$
0 \longrightarrow \bar{I} T \longrightarrow \overline{\mathcal{R}}_{+}(1) \longrightarrow \bar{S} \longrightarrow 0
$$

of graded T-modules. Since $\overline{\mathcal{R}}$ is a finitely generated T-module, so is \bar{S} and we get

$$
\bar{S}=\oplus_{n \geq 1} \overline{I^{n+1}} / Q^{n} \bar{I}
$$

by the following isomorphism

https://daneshyari.com/en/article/5771680

Download Persian Version:
https://daneshyari.com/article/5771680

Daneshyari.com

[^0]: E-mail address: tranthiphuong@tdt.edu.vn.
 ${ }^{1}$ The author is partially supported by JSPS KAKENHI 26400054.

