Accepted Manuscript

Semi-braces and the Yang-Baxter equation

Francesco Catino, Ilaria Colazzo, Paola Stefanelli

PII:
S0021-8693(17)30228-4
DOI: http://dx.doi.org/10.1016/j.jalgebra.2017.03.035
Reference: YJABR 16183

To appear in: Journal of Algebra

Received date: 15 November 2016

Please cite this article in press as: F. CATINO et al., Semi-braces and the Yang-Baxter equation, J. Algebra (2017), http://dx.doi.org/10.1016/j.jalgebra.2017.03.035

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Semi-braces and the Yang-Baxter equation

Francesco CATINO ${ }^{\text {a }}$, Ilaria COLAZZO ${ }^{\text {a }}$, Paola STEFANELLI ${ }^{\text {a,* }}$
${ }^{a}$ Dipartimento di Matematica e Fisica "Ennio De Giorgi"
Università del Salento
Via Provinciale Lecce-Arnesano 73100 Lecce (Italy)

Abstract

In this paper we obtain new solutions of the Yang-Baxter equation that are left non-degenerate through left semi-braces, a generalization of braces introduced by Rump. In order to provide new solutions we introduce the asymmetric product of left semi-braces, a generalization of the semidirect product of braces, that allows us to produce several examples of left semi-braces.

Keywords: Quantum Yang-Baxter equation, set-theoretical solution, skew brace, semi-brace
2010 MSC: 16T25, 16Y99, 16N20, 81R50

1. Introduction

The Yang-Baxter equation is a basic equation of statistical mechanics that arose from a work of Yang's [18] and one of Baxter's [3]. Recall that if V is a vector space, then a function $R: V \otimes V \rightarrow V \otimes V$ is said to be a solution of the Yang-Baxter equation if

$$
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12}
$$

is satisfied, where $R_{12}=R \otimes \mathrm{id}_{V}, R_{23}=\mathrm{id}_{V} \otimes R, R_{13}=\left(\mathrm{id}_{V} \otimes \tau\right)\left(R \otimes \mathrm{id}_{V}\right)\left(\mathrm{id}_{V} \otimes \tau\right)$, and τ the twist map on $V \otimes V$.
In 1992 Drinfeld [8] formally proposed to study a simplified case, i.e., the set-theoretical solution of the Yang-Baxter equation. Specifically, fixed a basis X on the vector space V we may find all solutions R induced by a linear extension of a function $\mathcal{R}: X \times X \rightarrow X \times X$, where X is a basis for V. In this case, \mathcal{R} is called a set-theoretic solution of the quantum Yang-Baxter equation. It is not difficult to see that if $\tau: X \times X \rightarrow X \times X$ is the twist map then a map $\mathcal{R}: X \times X \rightarrow X \times X$ if and only if the mappung $r=\tau \circ \mathcal{R}$ is a solution of the braid equation

$$
r_{1} r_{2} r_{1}=r_{2} r_{1} r_{2}
$$

where $r_{1}:=r \times \operatorname{id}_{X}$ and $r_{2}:=\operatorname{id}_{X} \times r$. Later, seminal papers of Etingof, Schedler and Soloviev [9] and of Gateva-Ivanova and M. Van den Bergh in [10] laid the groundwork for the study of a particular class of these solutions, the non-degenerate involutive ones, i.e., the solutions (X, r) such that the first and the

[^0]
https://daneshyari.com/en/article/5771752

Download Persian Version:

https://daneshyari.com/article/5771752

Daneshyari.com

[^0]: This work was partially supported by the Dipartimento di Matematica e Fisica "Ennio De Giorgi" - Università del Salento. The first author is a member of GNSAGA (INdAM).

 * Corresponding author

 Email addresses: francesco.catino@unisalento.it (Francesco CATINO), ilaria.colazzo@unisalento.it (Ilaria COLAZZO), paola.stefanelli@unisalento.it (Paola STEFANELLI)

