Ideal containments under flat extensions

Solomon Akesseh

A R T I C L E I N F O

Article history:

Received 22 December 2016
Available online 18 August 2017
Communicated by Steven Dale
Cutkosky

Keywords:

Symbolic powers
Fat points
Points in the projective plane
Fermat configuration
Regular sequences
Cohen-Macaulay
Algebraic geometry
Commutative algebra

Abstract

Let $\varphi: S=k\left[y_{0}, \ldots, y_{n}\right] \rightarrow R=k\left[y_{0}, \ldots, y_{n}\right]$ be given by $y_{i} \rightarrow f_{i}$ where f_{0}, \ldots, f_{n} is an R-regular sequence of homogeneous elements of the same degree. A recent paper shows for ideals, $I_{\Delta} \subseteq S$, of matroids, Δ, that $I_{\Delta}^{(m)} \subseteq I^{r}$ if and only if $\varphi_{*}\left(I_{\Delta}\right)^{(m)} \subseteq \varphi_{*}\left(I_{\Delta}\right)^{r}$ where $\varphi_{*}\left(I_{\Delta}\right)$ is the ideal generated in R by $\varphi\left(I_{\Delta}\right)$. We prove this result for saturated homogeneous ideals I of configurations of points in \mathbb{P}^{n} and use it to obtain many new counterexamples to $I^{(r n-n+1)} \subseteq I^{r}$ from previously known counterexamples.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let R be a commutative Noetherian domain. Let I be an ideal in R. We define the m th symbolic power of I to be the ideal

$$
I^{(m)}=R \cap \bigcap_{P \in A s s_{R}(I)} I^{m} R_{P} \subseteq R_{(0)}
$$

[^0]In this note we shall be interested in symbolic powers of homogeneous ideals of 0-dimensional subschemes in \mathbb{P}^{n}. In the case that the subscheme is reduced, the definition of the symbolic power takes a rather simple form by a theorem of Zariski and Nagata [11] and does not require passing to the localizations at various associated primes. Let $I \subseteq k\left[\mathbb{P}^{n}\right]$ be a homogeneous ideal of reduced points, p_{1}, \ldots, p_{l}, in \mathbb{P}^{n} with k a field of any characteristic. Then $I=I\left(p_{1}\right) \cap \cdots \cap I\left(p_{l}\right)$ where $I\left(p_{i}\right) \subseteq k\left[\mathbb{P}^{n}\right]$ is the ideal generated by all forms vanishing at p_{i}, and the m th symbolic power of I is simply $I^{(m)}=I\left(p_{1}\right)^{m} \cap \cdots \cap I\left(p_{l}\right)^{m}$.

In [10], Ein, Lazarsfeld and Smith proved that if $I \subseteq k\left[\mathbb{P}^{n}\right]$ is the radical ideal of a 0 -dimensional subscheme of \mathbb{P}^{n}, where k is an algebraically closed field of characteristic 0 , then $I^{(m r)} \subseteq\left(I^{(r+1-n)}\right)^{m}$ for all $m \in \mathbb{N}$ and $r \geq n$. Letting $r=n$, we get that $I^{(m n)} \subseteq I^{m}$ for all $m \in \mathbb{N}$. Hochster and Huneke in [15] extended this result to all ideals $I \subseteq k\left[\mathbb{P}^{n}\right]$ over any field k of arbitrary characteristic.

In [5] Bocci and Harbourne introduced a quantity $\rho(I)$, called the resurgence, associated to a nontrivial homogeneous ideal I in $k\left[\mathbb{P}^{n}\right]$, defined to be $\sup \left\{s / t: I^{(s)} \nsubseteq I^{t}\right\}$. It is seen immediately that if $\rho(I)$ exists, then for $s>\rho(I) t, I^{(s)} \subseteq I^{t}$. The results of $[10,15]$ guarantee that $\rho(I)$ exists since $I^{(m n)} \subseteq I^{m}$ implies that $\rho(I) \leq n$ for an ideal I in $k\left[\mathbb{P}^{n}\right]$. For an ideal I of points in $\mathbb{P}^{2}, I^{(m n)} \subseteq I^{m}$ gives $I^{(4)} \subseteq I^{2}$. According to [5] Huneke asked if $I^{(3)} \subseteq I^{2}$ for a homogeneous ideal I of points in \mathbb{P}^{2}. More generally Harbourne conjectured in [3] that if $I \subseteq k\left[\mathbb{P}^{n}\right]$ is a homogeneous ideal, then $I^{(r n-(n-1))} \subseteq I^{r}$ for all r. This led to the conjectures by Harbourne and Huneke in [13] for ideals I of points that $I^{(m n-n+1)} \subseteq \mathfrak{m}^{(m-1)(n-1)} I^{m}$ and $I^{(m n)} \subseteq \mathfrak{m}^{m(n-1)} I^{m}$ for $m \in \mathbb{N}$.

The second conjecture remains open. Cooper, Embree, Ha and Hoeful give a counterexample in $[7]$ to the first for $n=2=m$ for a homogeneous ideal $I \subseteq k\left[\mathbb{P}^{2}\right]$. The ideal I in this case is $I=\left(x y^{2}, y z^{2}, z x^{2}, x y z\right)=\left(x^{2}, y\right) \cap\left(y^{2}, z\right) \cap\left(z^{2}, x\right)$ whose zero locus in \mathbb{P}^{2} is the 3 coordinate vertices of $\mathbb{P}^{2},[0: 0: 1],[0: 1: 0]$ and $[1: 0: 0]$ together with 3 infinitely near points, one at each of the vertices, for a total of 6 points. Clearly the monomial $x^{2} y^{2} z^{2} \in\left(x^{2}, y\right)^{3} \cap\left(y^{2}, z\right)^{3} \cap\left(z^{2}, x\right)^{3}$ so $x^{2} y^{2} z^{2}$ is in $I^{(3)}$. Note $x y z \in I$ so $x^{2} y^{2} z^{2} \in I^{2}$, but $x^{2} y^{2} z^{2} \notin \mathfrak{m} I^{2}$.

Shortly thereafter a counterexample to the containment $I^{(3)} \nsubseteq I^{2}$ was given by Dumnicki, Szemberg and Tutaj-Gasinska in [9]. In this case I is the ideal of the 12 points dual to the 12 lines of the Hesse configuration. The Hesse configuration consists of the 9 flex points of a smooth cubic and the 12 lines through pairs of flexes. Thus I defines 12 points lying on 9 lines. Each of the lines goes through 4 of the points, and each point has 3 of the lines going through it. Specifically I is the saturated radical homogeneous ideal $I=\left(x\left(y^{3}-z^{3}\right), y\left(x^{3}-z^{3}\right), z\left(x^{3}-y^{3}\right)\right) \subset \mathbb{C}\left[\mathbb{P}^{2}\right]$. Its zero locus is the 3 coordinate vertices of \mathbb{P}^{2} together with the 9 intersection points of any 2 of the forms $x^{3}-y^{3}, x^{3}-z^{3}$ and $y^{3}-z^{3}$. The form $F=\left(x^{3}-y^{3}\right)\left(x^{3}-z^{3}\right)\left(y^{3}-z^{3}\right)$ defining the 9 lines belongs to $I^{(3)}$ since for each point in the configuration, 3 of the lines in the zero locus of F pass through the point, but $F \notin I^{2}$ and hence $I^{(3)} \nsubseteq I^{2}$. (Of course this also means that $I^{(3)} \nsubseteq \mathfrak{m} I^{2}$.) More generally, $I=\left(x\left(y^{n}-z^{n}\right)\right.$, $\left.y\left(x^{n}-z^{n}\right), z\left(x^{n}-y^{n}\right)\right)$ defines a configuration of $n^{2}+3$ points called a Fermat configuration [1]. For $n \geq 3$, we again have $I^{(3)} \nsubseteq I^{2}[14,17]$ over any field of characteristic not 2 or 3 containing n distinct nth roots of 1 .

https://daneshyari.com/en/article/5771768

Download Persian Version:

https://daneshyari.com/article/5771768

Daneshyari.com

[^0]: E-mail address: sakesseh2@math.unl.edu.

