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Exponential Sums and Riesz Energies

Stefan Steinerberger

Department of Mathematics, Yale University,
10 Hillhouse Avenue, New Haven, CT 06511, USA

Abstract

We bound an exponential sum that appears in the study of irregularities
of distribution (the low-frequency Fourier energy of the sum of several Dirac
measures) by geometric quantities: a special case is that for all {x1, . . . , xN} ⊂
T2, X ≥ 1 and a universal c > 0
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Since this exponential sum is intimately tied to rather subtle distribution
properties of the points, we obtain nonlocal structural statements for near-
minimizers of the Riesz-type energy. For X � N1/2 both upper and lower
bound match for maximally-separated point sets satisfying ‖xi−xj‖ � N−1/2.
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1. Introduction and Main Results

1.1. Introduction

Let {x1, . . . , xN} ⊂ T2 (throughout this paper normalized to T2 ∼= [0, 1]2).
Montgomery’s theorem [27] (see also Beck [4, 5]) is a classical example of an
irregularity of distribution phenomenon: there exists a disk D ⊂ T2 with
radius 1/4 or 1/2 such that the number of elements in the disk substantially
deviates from its expectation

|# {1 ≤ i ≤ N : xi ∈ D} −N |D|| � N1/4.
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