ARTICLE IN PRESS

YJNTH:5794

Journal of Number Theory ••• (••••) •••-•••

Sufficient conditions for large Galois scaffolds

Nigel P. Byott^a, G. Griffith Elder^{b,*}

^a Department of Mathematics, University of Exeter, Exeter, EX4 4QF, UK
^b Department of Mathematics, University of Nebraska at Omaha, Omaha, NE 68182-0243, USA

ARTICLE INFO

Article history: Received 28 April 2015 Received in revised form 6 June 2017 Accepted 13 June 2017 Available online xxxx Communicated by D. Burns

MSC: primary 11S15 secondary 11R33, 16T05

Keywords: Galois module structure Hopf order

ABSTRACT

Let L/K be a finite, Galois, totally ramified *p*-extension of complete local fields with perfect residue fields of characteristic p > 0. In this paper, we give conditions, valid for any Galois *p*-group G = Gal(L/K) (abelian or not) and for K of either possible characteristic (0 or p), that are sufficient for the existence of a Galois scaffold. The existence of a Galois scaffold makes it possible to address questions of integral Galois module structure, which is done in a separate paper [BCE]. But since our conditions can be difficult to check, we specialize to elementary abelian extensions and extend the main result of [Eld09] from characteristic p to characteristic 0. This result is then applied, using a result of Bondarko, to the construction of new Hopf orders over the valuation ring \mathfrak{O}_K that lie in K[G] for G an elementary abelian p-group.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let p be prime, κ be a perfect field of characteristic p, and K be a local field with residue field κ . Let L be a totally ramified Galois extension of K with G = Gal(L/K)

* Corresponding author. E-mail addresses: N.P.Byott@exeter.ac.uk (N.P. Byott), elder@unomaha.edu (G.G. Elder).

http://dx.doi.org/10.1016/j.jnt.2017.06.004 0022-314X/© 2017 Elsevier Inc. All rights reserved.

Please cite this article in press as: N.P. Byott, G.G. Elder, Sufficient conditions for large Galois scaffolds, J. Number Theory (2017), http://dx.doi.org/10.1016/j.jnt.2017.06.004

ARTICLE IN PRESS

N.P. Byott, G.G. Elder / Journal of Number Theory ••• (••••) •••-•••

of degree p^n for some n > 0, and let \mathfrak{O}_L be the ring of integers of L (*i.e.* its valuation ring). Local integral Galois module theory asks a question that is a consequence of three classical results: the Normal Basis Theorem, which states that L is free over the group algebra K[G]; a result of E. Noether [Noe32], which concludes that, because L/K is wildly ramified, \mathfrak{O}_L is not free over the group ring $\mathfrak{O}_K[G]$; and a local version of a result of H.W. Leopoldt [Leo59], which states that for absolute abelian extensions of the p-adic numbers (*i.e.* $K = \mathbb{Q}_p$), \mathfrak{O}_L is free over its associated order

$$\mathfrak{A}_{L/K} = \{ \alpha \in K[G] : \alpha \mathfrak{O}_L \subseteq \mathfrak{O}_L \},\$$

the largest \mathfrak{O}_K -order in the group algebra K[G] for which \mathfrak{O}_L is a module.

Question 1.1. When is the ring of integers \mathfrak{O}_L free over its associated order $\mathfrak{A}_{L/K}$?

Restrict for the moment to the situation where K is a finite extension of \mathbb{Q}_p . The earliest answers here showed us that unless $K = \mathbb{Q}_p$, \mathfrak{O}_L need not be free over $\mathfrak{A}_{L/K}$, which is why the question is currently asked in this way. Additionally, those early answers suggested a form that we might expect the answers to take. Based upon work of F. Bertrandias and M.-J. Ferton [BF72] when L/K is a C_p -extension, and B. Martel [Mar74] when L/K is a $C_2 \times C_2$ -extension, we might expect the answer to Question 1.1, necessary and sufficient conditions for \mathfrak{O}_L to be free over $\mathfrak{A}_{L/K}$, to be expressed in terms of the ramification numbers associated with the extension (integers *i* such that $G_i \neq G_{i+1}$ where G_i is the *i*th ramification group [Ser79, IV §1]). There have not been that many further results in this direction. Still,

- (1) When L/K is an abelian extension, and the ring of integers is replaced with the inverse different $\mathfrak{D}_{L/K}^{-1}$, [Byo97, Theorem 3.10] determines necessary conditions, in terms of ramification numbers, for the inverse different to be free over its associated order.
- (2) When K/\mathbb{Q}_p is unramified and L/K is a totally ramified abelian extension (not necessarily of *p*-power degree), D. Burns [Bur91] investigated freeness of ideals in \mathfrak{O}_L over their associated orders in K[G]. This was extended in [Bur00] to the case where K/\mathbb{Q}_p can be ramified, but associated orders are considered in $\mathbb{Q}_p[G]$ (or, more generally, in E[G], where $E \subseteq K$ and E/\mathbb{Q}_p is unramified). In both these situations, the existence of *any* ideal free over its associated order forces strong restrictions on the ramification of the extension L/K.
- (3) When L/K is a special type of cyclic Kummer extension, namely $L = K(\sqrt[p^n]{1+\beta})$ for some $\beta \in K$ with $p \nmid v_K(\beta) > 0$, where v_K is the normalized valuation on K, Y. Miyata determines necessary and sufficient conditions for \mathfrak{O}_L to be free over $\mathfrak{A}_{L/K}$ in terms of $v_K(\beta)$. These conditions can be restated in terms of ramification numbers [Miy98].
- (4) Finally, we move into characteristic p with $K = \kappa((t))$. When L/K is a special type of elementary abelian extension, namely *near one-dimensional*, and thus has a *Galois*

Please cite this article in press as: N.P. Byott, G.G. Elder, Sufficient conditions for large Galois scaffolds, J. Number Theory (2017), http://dx.doi.org/10.1016/j.jnt.2017.06.004

Download English Version:

https://daneshyari.com/en/article/5772482

Download Persian Version:

https://daneshyari.com/article/5772482

Daneshyari.com