

Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Non-vanishing of fundamental Fourier coefficients of paramodular forms

Jolanta Marzec

Department of Mathematics, Durham University, Lower Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom

ARTICLE INFO

Article history: Received 2 August 2016 Received in revised form 31 May 2017 Accepted 13 July 2017 Available online 25 August 2017 Communicated by S.D. Miller

Keywords: Paramodular forms Newforms Fourier coefficients U(p) operator

ABSTRACT

We prove that paramodular newforms of odd square-free level have infinitely many non-zero fundamental Fourier coefficients.

@ 2017 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of this article is to shed some light on Fourier coefficients of cuspidal paramodular forms. Paramodular forms are Siegel modular forms of degree 2 that are invariant under the action of the paramodular group

$$\Gamma^{\mathrm{para}}(N) := \mathrm{Sp}_4(\mathbb{Q}) \cap \begin{pmatrix} \mathbb{Z} & N\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z}/N \\ \mathbb{Z} & N\mathbb{Z} & \mathbb{Z} & \mathbb{Z} \\ N\mathbb{Z} & N\mathbb{Z} & N\mathbb{Z} & \mathbb{Z} \end{pmatrix}$$

for some natural number N.

E-mail address: jolanta.m.marzec@durham.ac.uk.

 $[\]label{eq:http://dx.doi.org/10.1016/j.jnt.2017.07.002} 0022-314 X (© 2017 Elsevier Inc. All rights reserved.$

One of the most natural questions one may ask about a Siegel modular form F of degree 2 is its determination by certain 'useful' subset of Fourier coefficients. We are interested in an infinite subset

$$\{a(F,T): \operatorname{disc} T = \operatorname{fundamental discriminant}\}$$

of fundamental Fourier coefficients, which plays an important role in the theory of Bessel models and *L*-functions. For instance, in certain cases, non-vanishing of a fundamental Fourier coefficient of a cuspidal Siegel modular form F is equivalent to existence of a global Bessel model of fundamental type (cf. [16, Lemma 4.1]) and is used to show analytic properties and special value results for *L*-functions for $GSp_4 \times GL_2$ associated to various twists of F (e.g. [8,12,17,18]). It is also known [19] that fundamental Fourier coefficients determine cuspidal Siegel modular forms of degree 2 of full level. Our result extends previous work by Saha [16, Theorem 3.4], [19, Theorem 1] and Saha, Schmidt [20, Theorem 2] in case of the levels $Sp_4(\mathbb{Z})$ and $\Gamma_0^{(2)}(N)$.

Theorem. Let $F \in S_k(\Gamma^{para}(N))$ be a non-zero paramodular cusp form of an arbitrary integer weight k and odd square-free level N which is an eigenfunction of the operators $T(p) + T(p^2)$ for primes $p \nmid N$, U(p) for $p \mid N$ and μ_N . Then F has infinitely many non-zero fundamental Fourier coefficients.

In particular, our theorem holds for paramodular newforms in the sense of [15].

Paramodular forms were already an object of interest of Siegel [21] but have become a true centre of attention within last ten years when Brumer and Kramer [4] conjectured an extension of the modularity theorem to abelian surfaces, known now as the paramodular conjecture.

Paramodular Conjecture. There is a one to one correspondence between isogeny classes of abelian surfaces \mathcal{A}/\mathbb{Q} of conductor N with $\operatorname{End}_{\mathbb{Q}}\mathcal{A} = \mathbb{Z}$ and (up to scalar multiplication) weight 2 cuspidal paramodular newforms F that are not Gritsenko lifts and have rational Hecke eigenvalues. Furthermore, the Hasse–Weil L-function of \mathcal{A} is equal to the spinor L-function of F.

In subsequent years the paramodular conjecture has been supported by an extensive computational evidence (e.g. [3,4,13]). Moreover, it was proved in the case when \mathcal{A} is the Weil restriction of an elliptic curve with respect to real quadratic extension of \mathbb{Q} (thanks to [10] and [7]), and in [2] some progress was made towards Weil restrictions with respect to imaginary quadratic extensions of \mathbb{Q} .

The proof of the above theorem consists of two parts and follows the strategy used in [16,19,20]. First we show that F has a non-zero primitive Fourier coefficient. This allows us to construct a non-zero modular form of half-integral weight which satisfies the assumptions of Theorems 2.2, 2.3 and therefore has infinitely many non-zero Fourier Download English Version:

https://daneshyari.com/en/article/5772492

Download Persian Version:

https://daneshyari.com/article/5772492

Daneshyari.com