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In this paper, we introduce a rewriting theory for linear monoidal categories. Those 
categories are a particular case of linear (n, p)-categories that we define in this 
paper. We also define linear (n, p)-polygraphs, a linear adaptation of n-polygraphs, 
to present linear (n − 1, p)-categories. We focus then on linear (3, 2)-polygraphs 
to give presentations of linear monoidal categories. We finally give an application 
of this theory to prove a basis theorem on the category AOB. Our method uses 
decreasingness, a property introduced by van Ostroom.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Affine walled Brauer algebras were introduced by Rui and Su [10] in the study of super Schur–Weyl duality. 
They show the Schur–Weyl duality between general Lie superalgebras and affine walled Brauer algebras. 
A linear monoidal category, the affine oriented Brauer category AOB was introduced in [2] to encode each 
walled Brauer algebra as one of its morphism spaces. This category is used to prove basis theorems for the 
affine walled Brauer algebras given in [10]. More precisely, the authors provides an explicit basis for each 
affine walled Brauer algebra. The proof of this theorem uses an intermediate result on cyclotomic quotients 
of AOB. For each of those quotients, a basis is given. With these multiple bases, each morphism space of 
AOB is given a generating family which is proved to be linearly independent.

Our aim is to give a constructive proof of the mentioned basis result. For this, we study AOB in this 
article by rewriting methods. Rewriting is a model of computation presenting relations between expressions 
as oriented computation steps. There are multiple examples of rewriting systems. An abstract rewriting 
system [5] is the data made of a set S and a relation → on S called the rewrite relation. A rewriting 
sequence from a to b is a finite sequence (u0, u1, · · · , un−1, un) of elements of S such that:

a = u0,
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b = un,

and for any 0 � k < n, the relation uk → uk+1 holds. A word rewriting system is the data made of an 
alphabet A and a relation ⇒ on the free monoid A∗ over A. We say that there is a rewriting step from a 
word u to a word v if there are words a, b, u ′ and v ′ such that:

u = au ′b,

v = av ′b,

u ′ ⇒ v ′.

A higher dimensional generalization of such rewriting systems has been introduced by Burroni [3] under the 
name of polygraph. An (n + 1)-polygraph is a rewriting system on the n-cells of an n-category.

To study AOB from a rewriting point of view, we will need to introduce the rewriting systems presenting 
monoidal linear categories. The objects giving such rewriting systems will be called linear (n, p)-polygraphs 
which are linear adaptations of n-polygraphs. Linear monoidal categories are a special case of what we 
will call linear (n, p)-categories. In this language, linear monoidal categories are linear (2, 2)-categories with 
only one 0-cell. They are presented by linear (3, 2)-polygraphs. Once those objects are defined, we will 
introduce the rewriting theory of linear (3, 2)-polygraphs. Thanks to this theory, we will construct bases for 
the morphism spaces of AOB.

Rewriting can offer constructive proofs by giving presentations of objects with certain properties. For 
example, two crucial properties studied in rewriting systems are termination and confluence. A rewriting 
system is terminating if it has no infinite rewriting sequence, in which case all computations end. A rewriting 
system is confluent if any pair of rewriting sequences with the same source can be completed into a pair of 
rewriting sequences with the same target, in which case all computations lead to the same result. A rewriting 
system is said to be convergent if it is terminating and confluent. In the case of word rewriting, the property 
of convergence gives a way to decide the word problem, that is, deciding if two words in the free monoid 
A∗ over A are equal in the quotient of A∗ by the relation ⇒.

What we will do in the case of AOB is giving a confluent presentation AOB of this linear (2, 2)-category 
with some others properties. Those properties will prove that the families proposed in [2] are indeed bases. 
The linear (3, 2)-polygraph AOB will not be terminating, which will prevent us to prove that AOB is 
confluent by using Newman’s lemma, a criterion needing termination to prove confluence from a weaker 
property called local confluence [5]. To prove that AOB is confluent, we will use a more general property 
called decreasingness introduced by van Ostroom in [13], see also [14]. We will prove that AOB is decreasing 
and use the theorem from [13] stating decreasingness implies confluence.

In the first section, we start by recalling the notions of higher dimensional category theory. Then, we 
define linear (n, p)-categories, which will be our higher dimensional categories with linear structure. After 
defining them, we recall in the second section the categorical construction of the category of n-polygraphs 
given in [7]. We define next the categorical construction of the category of linear (n, p)-polygraphs. We give 
their main rewriting properties, such that 4.2.15 in the case (n, p) = (3, 2) in which AOB falls.

In the third section we will study the decreasingness property defined in the case of abstract rewriting 
systems by van Ostroom [13]. Then, in the last section, we recall from [2] the definition of the lin-
ear (2, 2)-category AOB. This will lead us to give two linear (3, 2)-polygraphs presenting AOB. Those 
linear (3, 2)-polygraphs will be called AOB and AOB. The first one is a translation of the definition of 
AOB.

The main result of this article, Theorem 5.2.9 states AOB is confluent. It will be proved with the properties 
of confluence of critical branchings and decreasingness. This theorem gives us the main result of [2] as an 
entirely constructive consequence given as Corollary 5.2.10.



Download English Version:

https://daneshyari.com/en/article/5772734

Download Persian Version:

https://daneshyari.com/article/5772734

Daneshyari.com

https://daneshyari.com/en/article/5772734
https://daneshyari.com/article/5772734
https://daneshyari.com

