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Let (X, L) be a 3-dimensional scroll over a smooth surface Y . Its Hilbert curve is 
an affine plane cubic consisting of a given line and a conic. This conic turns out to 
be the Hilbert curve of the Q-polarized surface (Y, 12 det E), where E is the rank-2
vector bundle obtained by pushing down L via the scroll projection, if and only if 
E is properly semistable in the sense of Bogomolov.

© 2017 Elsevier B.V. All rights reserved.

0. Introduction

The Hilbert curve of a polarized manifold was introduced in [5] and its study has been continued in 
[10,11,4]. The natural expectation is that several properties of the polarized manifold are encoded by this 
object. In fact a relevant property of the Hilbert curve is its sensitivity with respect to fibrations that suitable 
adjoint linear systems to the polarizing line bundle may induce on the manifold [5, Theorem 6.1]. The case of 
projective bundles over a smooth curve, with special emphasis on scrolls, has been widely discussed in [10]. 
Other examples with special regard to threefolds are presented in [5]. However, the case of scrolls over a 
surface is not yet discussed in the literature, not even for dimension three. Filling this gap is exactly the aim 
of this paper. Moreover, confining to threefolds we get a precise parallel with the case of quadric fibrations 
over a smooth curve studied in [5, Proposition 4.8]. Recall that these two types of varieties play a similar 
role in adjunction theory. In particular, in the setting we consider, a precise answer is given to a problem 
raised in [5].

Here is a summary of the content. Let (X, L) be a 3-dimensional scroll over a smooth surface Y , and 
let E = π∗L, where π : X → Y is the scroll projection. According to [5, Theorem 6.1], the Hilbert curve 
Γ(X,L) of (X, L) is reducible into a given line � and a conic, say G. In Section 2 we determine explicitly its 
canonical equation. The problem whether the resulting conic G itself can in turn be the Hilbert curve of 
any Q-polarized surface seems not affordable in the general case, due to a too large number of variables. In 
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fact, in Section 3, we present some elementary examples illustrating a range of possibilities. This suggests 
to confine the problem to the case where the underlying surface is the base itself, Y , of the scroll. In this 
context, the Hodge index theorem provides a necessary condition: an upper bound expressed in terms of KY

and of the ample rank-2 vector bundle E , that the Bogomolov number of E has to satisfy. On the other hand, 
the base surface Y is endowed with a natural polarization, namely det E . Addressing the specific question 
raised in [5, Problem 6.6 (2)], we can then ask whether the conic G is the Hilbert curve of Y with some 
Q-polarization related to det E . What we prove in Section 4 is that G is the Hilbert curve of (Y, 12 det E) up 
to HC-equivalence (see [11]), if and only if E is properly semistable (in the sense of Bogomolov).

1. Background material

Varieties considered in this paper are defined over the field C of complex numbers. We use the standard 
notation and terminology from algebraic geometry. A manifold is any smooth projective variety; a surface 
is a manifold of dimension 2. The symbol ≡ will denote numerical equivalence. With a little abuse, we 
adopt the additive notation for the tensor products of line bundles. The pullback of a vector bundle F
on a manifold X by an embedding Y ↪→ X is simply denoted by FY . We denote by TX and KX the 
tangent bundle and the canonical bundle of a manifold X, respectively. A polarized manifold is a pair 
(X, L) consisting of a manifold X and an ample line bundle L on X. The word scroll has to be intended 
in the classical sense. We denote by Fe := P

(
OP1 ⊕ OP1(−e)

)
the Segre–Hirzebruch surface of invariant 

e (e ≥ 0), and C0 and f will stand for the tautological section and a fiber respectively, as in [8, p. 373]. 
Clearly, (F0, [aC0 + bf ]) =

(
P1 × P1, OP1×P1(a, b)

)
.

For the notion and the general properties of the Hilbert curve associated to a polarized manifold we refer 
to [5], see also [10]. Here we just recall some basic facts. Let (X, L) be a polarized manifold of dimension 
n ≥ 2: if rk〈KX , L〉 = 2 we can consider N(X) := Num(X) ⊗Z C as a complex affine space and inside 
it the plane A2 = C〈KX , L〉, generated by the classes of KX and L. For any line bundle D on X the 
Riemann–Roch theorem provides an expression for the Euler–Poincaré characteristic χ(D) in terms of D
and the Chern classes of X. Let p denote the complexified polynomial of χ(D), when we set D = xKX +yL, 
with x, y complex numbers, namely p(x, y) = χ(xKX + yL). The Hilbert curve of (X, L) is the complex 
affine plane curve Γ = Γ(X,L) ⊂ A2 of degree n defined by p(x, y) = 0 [5, Section 2]. Taking into account 
that c := 1

2KX is the fixed point of the Serre involution D 
→ KX −D acting on N(X), it is convenient to 
represent Γ in terms of affine coordinates (u = x − 1

2 , v = y) centered at c instead of (x, y). In other words, 
rewrite our divisor as D = 1

2KX + E, where E = uKX + vL. Then Γ can be represented with respect to 
these coordinates by p(1

2 + u, v) = 0. An obvious advantage is that, due to Serre duality, Γ is symmetric 
with respect to c (the origin in the (u, v)-plane). We refer to p(1

2 + u, v) = 0 as the canonical equation of Γ. 
Another consequence of Serre duality is that c ∈ Γ if n is odd, while if n is even and Γ � c, then c is a 
singular point of Γ [5, Section 2].

According to the above, χ(D) can be re-expressed in terms of E and the Chern classes of X in a nice 
way. In particular, for n = 2 we get

χ(D) = 1
2E

2 +
(
χ(OX) − 1

8K
2
X

)
. (1)

If n = 3, recalling that χ(OX) = − 1
24KX · c2, where c2 = c2(X), the usual expression of the Riemann–Roch 

theorem (e. g., see [8, p. 437]) takes the more convenient form

χ(D) = 1
6E

3 + 1
24E · (2c2 −K2

X). (2)



Download	English	Version:

https://daneshyari.com/en/article/5772844

Download	Persian	Version:

https://daneshyari.com/article/5772844

Daneshyari.com

https://daneshyari.com/en/article/5772844
https://daneshyari.com/article/5772844
https://daneshyari.com/

