Monotonic linear recurrences

Joseph F. Grcar
6059 Castlebrook Drive, Castro Valley, CA 94552, USA

A R T I C L E I N F O

Article history:

Received 18 September 2017
Accepted 24 September 2017
Available online xxxx
Submitted by R. Brualdi

MSC:

65Q30
15A18
33 C 10
65F10
65 F 15

Keywords:
Unstable recurrences
Bessel functions
Eigenvectors
Lanczos method

A B S T R A C T

Three-term (or, second order), linear, recurrence sequences can have magnitudes that grow or shrink monotonically. The rate of change can be tightly estimated a-priori. Applications are Bessel functions, eigenvectors of tridiagonal matrices, and the Lanczos method.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Parlett [1, §2] in this journal recently discovered inequalities among consecutive entries in eigenvectors of tridiagonal matrices. His proof depends on triangular decomposition of diagonally dominant matrices in the form stated, for example, by Golub and Van Loan [2, §3.4.10].

[^0]https://doi.org/10.1016/j.laa.2017.09.028
0024-3795/© 2017 Elsevier Inc. All rights reserved.

This paper recasts Parlett's inequalities: (i) with a stronger conclusion, (ii) a simpler proof, and (iii) in the more applicable setting of recurrence sequences. Briefly, if central coefficients of three-term recurrence formulas dominate the other coefficients in magnitude, for some range of consecutive indices $p \leq k \leq q$,

$$
\begin{align*}
k^{\text {th }} \text { recurrence formula: } & a_{k-1} x_{k-1}+b_{k} x_{k}+c_{k+1} x_{k+1}=0 \tag{1}\\
\text { dominant central coefficient: } & \left|b_{k}\right|>\left|a_{k-1}\right|+\left|c_{k+1}\right| \tag{2}\\
\text { nonzero peripheral coefficients: } & \text { (i) } a_{k-1} \neq 0 \text { and (ii) } c_{k+1} \neq 0 \tag{3}\\
\text { not all terms zero: } & x_{k-1}, x_{k}, x_{k+1} \tag{4}
\end{align*}
$$

then the magnitudes, $\left|x_{k}\right|$ for $p-1 \leq k \leq q+1$, either are monotonic, or have exactly one inflection where the magnitudes switch from decreasing to increasing. Further, ratios of consecutive magnitudes satisfy a-priori bounds. The formula coefficients (1) and sequence terms (4) may be real numbers or complex numbers.

The monotonic property is demonstrated for Bessel functions, for Parlett's case of eigenvectors of tridiagonal matrices, and for the Lanczos algorithm.

Regularity of magnitudes in certain recurrence sequences is a basic fact of numerical mathematics that was overlooked in spite of many years studying recurrence formulas. For surveys of the historical theory see Lakshmikantham and Trigiante [3] and MilneThomson [4].

2. Criteria for monotonic sequences

Theorem 1 (Growing sequence). If for all $p \leq k \leq q$
(A) conditions (1), (2), and (3.ii) hold
and if at the start
(B) $\left|x_{p-1}\right| \leq\left|x_{p}\right|$
(C) $x_{p} \neq 0$
then the magnitudes $\left|x_{p}\right|, \ldots,\left|x_{q}\right|,\left|x_{q+1}\right|$ strictly increase with ratios sandwiched below and above by the following inequalities for $p \leq k \leq q$,

$$
\begin{equation*}
1<\frac{\left|b_{k}\right|-\left|a_{k-1}\right|}{\left|c_{k+1}\right|} \leq \frac{\left|x_{k+1}\right|}{\left|x_{k}\right|} \leq \frac{\left|b_{k}\right|+\left|a_{k-1}\right|}{\left|c_{k+1}\right|} . \tag{5}
\end{equation*}
$$

The numbers in these formulas may be real or complex.
Proof. The theorem follows by induction on k. In the initial case, $k=p$, assumptions (2) and (3.ii) are equivalent to the first inequality in (5). The second and third inequalities are

https://daneshyari.com/en/article/5772922

Download Persian Version
https://daneshyari.com/article/5772922

Daneshyari.com

[^0]: E-mail address: jfgrcar@gmail.com.

