Accepted Manuscript

Decompositions of a matrix by means of its dual matrices with applications

Ik-Pyo Kim, Arnold R. Kräuter

PII:	S0024-3795(17)30565-7
DOI:	https://doi.org/10.1016/j.laa.2017.09.031
Reference:	LAA 14337

To appear in: Linear Algebra and its Applications

Received date: 22 May 2017
Accepted date: 27 September 2017

Please cite this article in press as: I.-P. Kim, A.R. Kräuter, Decompositions of a matrix by means of its dual matrices with applications, Linear Algebra Appl. (2017), https://doi.org/10.1016/j.laa.2017.09.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Decompositions of a matrix by means of its dual matrices with applications ${ }^{\text {² }}$

Ik-Pyo Kim ${ }^{\text {a,* }}$, Arnold R. Kräuter ${ }^{\text {b }}$
${ }^{a}$ Department of Mathematics Education, Daegu University, Gyeongbuk, 38453, Republic of Korea
${ }^{b}$ Department für Mathematik und Informationstechnologie, Lehrstuhl für Mathematik und Statistik, Montanuniversität Leoben, Franz-Josef-Strasse 18, 8700 Leoben, Austria

Abstract

We introduce the notion of dual matrices of an infinite matrix A, which are defined by the dual sequences of rows of A and naturally connected to the Pascal matrix $P=\left[\binom{i}{j}\right](i, j=0,1,2, \ldots)$. We present the Cholesky decomposition of the symmetric Pascal matrix by means of its dual matrix. Decompositions of a Vandermonde matrix are used to obtain variants of the Lagrange interpolation polynomial of degree $\leq n$ that passes through the $n+1$ points $\left(i, q_{i}\right)$ for $i=0,1, \ldots, n$.

Keywords: Dual sequence, Dual matrix, Vandermonde matrix, Hankel matrix, Toeplitz matrix, Lagrange interpolation polynomial 2010 MSC: 15B05, 11B39, 11B65

1. Introduction

Let \mathbf{R}^{∞} denote the infinite dimensional real vector space consisting of all real sequences $\mathbf{a}=$ $\left(a_{0}, a_{1}, a_{2}, \ldots\right)^{T}$, and let $\Delta \mathbf{a}$ denote the difference sequence of \mathbf{a}, defined by:

$$
\Delta \mathbf{a}=\left(\Delta a_{0}, \Delta a_{1}, \Delta a_{2}, \ldots\right)^{T}
$$

where $\Delta a_{i}=a_{i+1}-a_{i}$ for each $i=0,1,2, \ldots$ Let $\Delta^{k} \mathbf{a}=\left(\Delta^{k} a_{0}, \Delta^{k} a_{1}, \Delta^{k} a_{2}, \ldots\right)^{T}, k=0,1,2, \ldots$, be the k th difference sequence defined inductively by $\Delta^{k} \mathbf{a}=\Delta\left(\Delta^{k-1} \mathbf{a}\right)$, where $\Delta^{0} \mathbf{a}=\mathbf{a}$. For a sequence $\mathbf{a}=\left(a_{0}, a_{1}, a_{2}, \ldots\right)^{T} \in \mathbf{R}^{\infty}$, let $\mathbb{M}^{\mathbf{a}}$ denote the difference matrix of a defined by:

$$
\mathbb{M}^{\mathbf{a}}=\left[\begin{array}{c}
\mathbf{a}^{T} \tag{1.1}\\
(\Delta \mathbf{a})^{T} \\
\left(\Delta^{2} \mathbf{a}\right)^{T} \\
\vdots
\end{array}\right]
$$

[^0]
https://daneshyari.com/en/article/5772927

Download Persian Version:
https://daneshyari.com/article/5772927

Daneshyari.com

[^0]: ${ }^{2}$ Research supported by Daegu University Research Grant 2014
 *Corresponding author
 Email addresses: kimikpyo@daegu.ac.kr (Ik-Pyo Kim), arnold.kraeuter@unileoben.ac.at (Arnold R. Kräuter)

