The first two largest spectral radii of uniform supertrees with given diameter $*$

Peng Xiao ${ }^{\text {a,b }}$, Ligong Wang ${ }^{\text {a,* }}$, Yanfei Du ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Applied Mathematics, School of Science, Northwestern
Polytechnical University, Xi'an, Shaanxi 710072, PR China
${ }^{\text {b }}$ College of Arts and Sciences, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China

A R T I C L E I N F O

Article history:

Received 3 January 2017
Accepted 12 September 2017
Available online 14 September 2017
Submitted by J. Shao

MSC:

05C35
05C50
05C65
Keywords:
Spectral radius
Supertree
Diameter
Hypergraph

A B S T R A C T

A supertree is a connected and acyclic hypergraph. Let $\mathbb{S}(m, d, k)$ be the set of k-uniform supertrees with m edges and diameter d. In this paper, we determine the supertrees with the first two largest spectral radii among all supertrees in $\mathbb{S}(m, d, k)$ for $3 \leq d \leq m-1$.
© 2017 Elsevier Inc. All rights reserved.

[^0]
1. Introduction

A hypergraph $H=(V, E)$ consists of a vertex set $V=V(H)$ and an edge set $E=$ $E(H)$, where $V=V(H)$ is nonempty and each edge $e \in E(H)$ is a subset of $V(H)$ containing at least two elements. We say that a hypergraph H is k-uniform if every edge has size k. A simple graph is a 2-uniform hypergraph.

For $u, v \in V(H)$, a walk from u to v in H is defined to be a sequence of vertices and edges $v_{1}, e_{1}, v_{2}, \ldots, e_{d}, v_{d+1}$ with $v_{1}=u$ and $v_{d+1}=v$ such that edge e_{i} contains vertices v_{i} and v_{i+1}, and $v_{i} \neq v_{i+1}$ for $i=1,2, \ldots, d$. The value d is the length of this walk. A path is a walk with all v_{i} distinct and all e_{i} distinct. A cycle is a walk containing at least two edges, all e_{i} are distinct and all v_{i} are distinct except $v_{1}=v_{d+1}$. A hypergraph is connected if for any pair of vertices, there is a path which connects these vertices; it is not connected otherwise. The distance $d(u, v)=d_{H}(u, v)$ between two vertices u and v is the minimum length of a path which connects u and v. The diameter $d(H)$ of H is defined by $d(H)=\max \{d(u, v): u, v \in V(H)\}$.

For a vertex $v \in V(H)$, the degree $d(v)=d_{H}(v)$ of v is the number of edges containing v of H. A vertex of degree one of H is called a pendant vertex of H. In a k-uniform hypergraph, an edge e is called a pendant edge if e contains exactly $k-1$ vertices of degree one. If e is not a pendant edge, then it is called a non-pendant edge. An edge e is said to be incident to a vertex v if $v \in e$.

The concept of tensor eigenvalues was independently proposed in [9,13]. More details on eigenvalues and tensors can be found in $[3,14,18]$.

Definition 1.1. An order k dimension n tensor $\mathcal{A}=\left(a_{i_{1} i_{2} \ldots i_{k}}\right) \in \mathbb{C}^{n \times n \times \ldots \times n}$ is a multidimensional array with n^{k} entries, where $i_{j} \in[n]=\{1,2, \ldots, n\}$ for each $j=1,2, \cdots, k$.

Definition 1.2. Let $H=(V, E)$ be a k-uniform hypergraph on n vertices. The adjacency tensor $\mathcal{A}=\mathcal{A}(H)$ of H is defined as the order k dimension n tensor with entries $a_{i_{1} i_{2} \ldots i_{k}}$ such that

$$
a_{i_{1} i_{2} \ldots i_{k}}= \begin{cases}\frac{1}{(k-1)!}, & \left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \in E(H) \\ 0, & \text { otherwise }\end{cases}
$$

Definition 1.3. ([13]) Let \mathcal{A} be an order k dimension n tensor, and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T} \in$ \mathbb{C}^{n} be a column vector of dimension n. Then $\mathcal{A} x^{k-1}$ is defined to be a vector in \mathbb{C}^{n} whose i th component is:

$$
\left(\mathcal{A} x^{k-1}\right)_{i}=\sum_{i_{2}, \ldots, i_{k}=1}^{n} a_{i i_{2} \ldots i_{k}} x_{i_{2}} \ldots x_{i_{k}},(i=1,2, \ldots, n)
$$

Let $x^{[r]}=\left(x_{1}^{r}, x_{2}^{r}, \ldots, x_{n}^{r}\right)^{T} \in \mathbb{C}^{n}$. Then a number $\lambda \in \mathbb{C}$ is called an eigenvalue of the tensor \mathcal{A} if there exists a nonzero vector $x \in \mathbb{C}^{n}$ such that

https://daneshyari.com/en/article/5773031

Download Persian Version:

https://daneshyari.com/article/5773031

Daneshyari.com

[^0]: ${ }^{4}$ Supported by the National Natural Science Foundation of China (No. 11171273) and the Shaanxi Provincial Education Department Foundation of China (No. 17JK0106).

 * Corresponding author.

 E-mail addresses: xiaopeng@sust.edu.cn (P. Xiao), lgwangmath@163.com (L. Wang), duyanfei@sust.edu.cn (Y. Du).

