

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras

LINEAR

lications

Vyacheslav Futorny^a, Tetiana Klymchuk^{b,c}, Anatolii P. Petravchuk^c, Vladimir V. Sergeichuk^{d,*}

^a Department of Mathematics, University of São Paulo, Brazil

^b Universitat Politècnica de Catalunya, Barcelona, Spain

 $^{\rm c}$ Faculty of Mechanics and Mathematics, Taras Shevchenko University, Kiev, Ukraine

^d Institute of Mathematics, Tereshchenkivska 3, Kiev, Ukraine

ARTICLE INFO

Article history: Received 6 August 2017 Accepted 18 September 2017 Available online 21 September 2017 Submitted by P. Semrl

MSC: 15A21 16G60 17B10

Keywords: Spaces of commuting linear operators Matrix Lie algebras Wild problems

ABSTRACT

For each two-dimensional vector space V of commuting $n \times n$ matrices over a field \mathbb{F} with at least 3 elements, we denote by \tilde{V} the vector space of all $(n + 1) \times (n + 1)$ matrices of the form $\begin{bmatrix} A & * \\ 0 & 0 \end{bmatrix}$ with $A \in V$. We prove the wildness of the problem of classifying Lie algebras \tilde{V} with the bracket operation [u, v] := uv - vu. We also prove the wildness of the problem of classifying two-dimensional vector spaces consisting of commuting linear operators on a vector space over a field.

@ 2017 Elsevier Inc. All rights reserved.

* Corresponding author.

E-mail addresses: futorny@ime.usp.br (V. Futorny), tetiana.klymchuk@upc.edu (T. Klymchuk), aptr@univ.kiev.ua (A.P. Petravchuk), sergeich@imath.kiev.ua (V.V. Sergeichuk).

1. Introduction

202

Let $\mathbb F$ be a field that is not the field with 2 elements. We prove the wildness of the problems of classifying

- two-dimensional vector spaces consisting of commuting linear operators on a vector space over \mathbb{F} (see Section 2), and
- Lie algebras L(V) with bracket [u, v] := uv vu of matrices of the form

$$\begin{bmatrix} & & \alpha_1 \\ A & & \vdots \\ & & & \alpha_n \\ 0 & \dots & 0 & 0 \end{bmatrix}, \quad \text{in which } A \in V, \quad \alpha_1, \dots, \alpha_n \in \mathbb{F}, \tag{1}$$

in which V is any two-dimensional vector space of $n \times n$ commuting matrices over \mathbb{F} (see Section 3).

A classification problem is called *wild* if it contains the problem of classifying pairs of $n \times n$ matrices up to similarity transformations

$$(M,N) \mapsto S^{-1}(M,N)S := (S^{-1}MS, S^{-1}NS)$$

with nonsingular S. This notion was introduced by Donovan and Freislich [8,9]. Each wild problem is considered as hopeless since it contains the problem of classifying an arbitrary system of linear mappings, that is, representations of an arbitrary quiver (see [13,5]).

Let \mathcal{U} be an *n*-dimensional vector space over \mathbb{F} . The problem of classifying linear operators $\mathcal{A} : \mathcal{U} \to \mathcal{U}$ is the problem of classifying matrices $A \in \mathbb{F}^{n \times n}$ up to similarity transformations $A \mapsto S^{-1}AS$ with nonsingular $S \in \mathbb{F}^{n \times n}$. In the same way, the problem of classifying vector spaces \mathcal{V} of linear operators on \mathcal{U} is the problem of classifying matrix vector spaces $V \subset \mathbb{F}^{n \times n}$ up to similarity transformations

$$V \mapsto S^{-1}VS := \{S^{-1}AS \mid A \in V\}$$

$$\tag{2}$$

with nonsingular $S \in \mathbb{F}^{n \times n}$ (the spaces V and $S^{-1}VS$ are *matrix isomorphic*; see [14]). In Theorem 1(a), we prove the wildness of the problem of classifying two-dimensional vector spaces $V \subset \mathbb{F}^{n \times n}$ of commuting matrices up to transformations (2).

Each two-dimensional vector space $V \subset \mathbb{F}^{n \times n}$ is given by its basis $A, B \in V$ that is determined up to transformations $(A, B) \mapsto (\alpha A + \beta B, \gamma A + \delta B)$, in which $\begin{bmatrix} \alpha & \gamma \\ \beta & \delta \end{bmatrix} \in \mathbb{F}^{2 \times 2}$ is a change-of-basis matrix. Thus, the problem of classifying two-dimensional vector spaces $V \subset \mathbb{F}^{n \times n}$ up to transformations (2) is the problem of classifying pairs of linear independent matrices $A, B \in \mathbb{F}^{n \times n}$ up to transformations

$$(A, B) \mapsto (A', B') := S^{-1}(\alpha A + \beta B, \gamma A + \delta B)S, \tag{3}$$

Download English Version:

https://daneshyari.com/en/article/5773036

Download Persian Version:

https://daneshyari.com/article/5773036

Daneshyari.com