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We study extensions of compressive sensing and low rank 
matrix recovery (matrix completion) to the recovery of low 
rank tensors of higher order from a small number of linear 
measurements. While the theoretical understanding of low 
rank matrix recovery is already well-developed, only few 
contributions on the low rank tensor recovery problem are 
available so far. In this paper, we introduce versions of 
the iterative hard thresholding algorithm for several tensor 
decompositions, namely the higher order singular value 
decomposition (HOSVD), the tensor train format (TT), and 
the general hierarchical Tucker decomposition (HT). We 
provide a partial convergence result for these algorithms which 
is based on a variant of the restricted isometry property of the 
measurement operator adapted to the tensor decomposition 
at hand that induces a corresponding notion of tensor rank. 
We show that subgaussian measurement ensembles satisfy 
the tensor restricted isometry property with high probability 
under a certain almost optimal bound on the number of 
measurements which depends on the corresponding tensor 
format. These bounds are extended to partial Fourier maps 
combined with random sign flips of the tensor entries. Finally, 
we illustrate the performance of iterative hard thresholding 
methods for tensor recovery via numerical experiments where 
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we consider recovery from Gaussian random measurements, 
tensor completion (recovery of missing entries), and Fourier 
measurements for third order tensors.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Low rank recovery builds on ideas from the theory of compressive sensing which pre-
dicts that sparse vectors can be recovered from incomplete measurements via efficient 
algorithms including �1-minimization. The goal of low rank matrix recovery is to recon-
struct an unknown matrix X ∈ R

n1×n2 from linear measurements y = A(X), where 
A : R

n1×n2 → R
m with m � n1n2. Since this is impossible without additional as-

sumptions, one requires that X has rank at most r � min{n1, n2}, or can at least be 
approximated well by a rank-r matrix. This setup appears in a number of applications 
including signal processing [2,36], quantum state tomography [23,24,34,39] and recom-
mender system design [10,11].

Unfortunately, the natural approach of finding the solution of the optimization prob-
lem

min
Z∈Rn1×n2

rank (Z) s.t. A (Z) = y, (1)

is NP hard in general. Nevertheless, it has been shown that solving the convex optimiza-
tion problem

min
Z∈Rn1×n2

‖Z‖∗ s.t. A (Z) = y, (2)

where ‖Z‖∗ = tr
(

(Z∗Z)1/2
)

denotes the nuclear norm of a matrix Z, reconstructs 
X exactly under suitable conditions on A [10,18,36,50]. Provably optimal measurement 
maps can be constructed using randomness. For a (sub-)Gaussian random measurement 
map, m ≥ Crmax{n1, n2} measurements are sufficient to ensure stable and robust 
recovery via nuclear norm minimization [9,36,50] and other algorithms such as iterative 
hard thresholding [60]. We refer to [34] for extensions to ensembles with four finite 
moments.

In this note, we go one step further and consider the recovery of low rank tensors X ∈
Rn1×n2×···×nd of order d ≥ 3 from a small number of linear measurements y = A (X), 
where A : R

n1×n2×···×nd → R
m, m � n1n2 · · ·nd. Tensors of low rank appear in a 

variety of applications such as video processing (d = 3) [40], time-dependent 3D imaging 
(d = 4), ray tracing where the material dependent bidirectional reflection function is an 
order four tensor that has to be determined from measurements [40], numerical solution 
of the electronic Schrödinger equation (d = 3N , where N is the number of particles) 
[4,41,67], machine learning [51] and more.
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