A new estimate for the constants of an inequality due to Hardy and Littlewood

Antonio Gomes Nunes ${ }^{1}$
Department of Mathematics - CCEN, UFERSA, Mossoró, RN, Brazil

A R T I C L E I N F O

Article history:

Received 13 January 2017
Accepted 25 March 2017
Available online 27 March 2017
Submitted by P. Semrl

MSC:
 46G25

Keywords:
Optimal constants
Hardy-Littlewood inequality
\qquad
A B S TRACT

In this paper we provide a family of inequalities, extending a recent result due to Albuquerque et al.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The Hardy-Littlewood inequalities [11] for m-linear forms and polynomials (see [2-5, $7,9,13-15,17]$) are perfect extensions of the Bohnenblust-Hille inequality [6] when the sequence space c_{0} is replaced by the sequence space ℓ_{p}. These inequalities assert that for any integer $m \geq 2$ there exist constants $C_{m, p}^{\mathbb{K}}, D_{m, p}^{\mathbb{K}} \geq 1$ such that

$$
\begin{equation*}
\left(\sum_{j_{1}, \cdots, j_{m}=1}^{\infty}\left|T\left(e_{j_{1}}, \cdots, e_{j_{m}}\right)\right|^{\frac{2 m p}{m_{p}+p-2 m}}\right)^{\frac{m p+p-2 m}{2 m p}} \leq C_{m, p}^{\mathbb{K}}\|T\| \tag{1.1}
\end{equation*}
$$

[^0]when $2 m \leq p \leq \infty$, and
$$
\left(\sum_{j_{1}, \cdots, j_{m}=1}^{\infty}\left|T\left(e_{j_{1}}, \cdots, e_{j_{m}}\right)\right|^{\frac{p}{p-m}}\right)^{\frac{p-m}{p}} \leq D_{m, p}^{\mathbb{K}}\|T\|
$$
when $m<p \leq 2 m$, for all continuous m-linear forms $T: \ell_{p} \times \cdots \times \ell_{p} \rightarrow \mathbb{K}$ (here, and henceforth, $\mathbb{K}=\mathbb{R}$ or \mathbb{C}). Both exponents are optimal, i.e., cannot be smaller without paying the price of a dependence on n arising on the respective constants. Following usual convention in the field, c_{0} is understood as the substitute of ℓ_{∞} when the exponent p goes to infinity.

The investigation of the optimal constants of the Hardy-Littlewood inequalities is closely related to the fashionable, mysterious and puzzling investigation of the optimal Bohnenblust-Hille inequality constants (see, for instance $[12,15]$ and the references therein).

In this note we extend the following result of [1, Theorem 3]:
Theorem 1 (Albuquerque et al.). Let $m \geq 2$ be a positive integer and $m<p \leq 2 m-2$. Then, for all continuous m-linear forms $T: \ell_{p} \times \cdots \times \ell_{p} \rightarrow \mathbb{K}$ and all positive integers n, we have

$$
\left(\sum_{j_{i}=1}^{n}\left(\sum_{\hat{j}_{i}=1}^{n}\left|T\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)\right|^{\frac{p}{p-(m-1)}}\right)^{\frac{p-(m-1)}{p} \cdot \frac{p}{p-m}}\right)^{\frac{p-m}{p}} \leq 2^{\frac{(m-1)(p-m+1)}{p}}\|T\|
$$

More precisely, using a variant of the technique introduced in [1], we find a family of inequalities extending the above result. Our result reads as follows, where $A_{\lambda_{0}}$ is the optimal constant of the Khinchin inequality (defined in Section 2):

Theorem 2. If $\lambda_{0} \in[1,2)$ and

$$
\lambda_{0} m<p \leq \frac{2 \lambda_{0}(m-1)}{2-\lambda_{0}}
$$

then

$$
\left(\sum_{j_{i}=1}^{n}\left(\sum_{\hat{j}_{i}=1}^{n}\left|T\left(e_{j_{1}}, \ldots, e_{j_{m}}\right)\right|^{s}\right)^{\frac{1}{s} \eta_{1}}\right)^{\frac{1}{\eta_{1}}} \leq A_{\lambda_{0}}^{\frac{-2(m-1)}{s}}\|T\|
$$

for

https://daneshyari.com/en/article/5773248

Download Persian Version:
https://daneshyari.com/article/5773248

Daneshyari.com

[^0]: E-mail addresses: nunesag@gmail.com, nunesag@ufersa.edu.br.
 ${ }^{1}$ Partially supported by CNPq-Brazil, Grant 302834/2013-3.

