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1. Introduction

The Hardy–Littlewood inequalities [11] for m-linear forms and polynomials (see [2–5,
7,9,13–15,17]) are perfect extensions of the Bohnenblust–Hille inequality [6] when the 
sequence space c0 is replaced by the sequence space �p. These inequalities assert that for 
any integer m ≥ 2 there exist constants CK

m,p, D
K

m,p ≥ 1 such that

⎛⎝ ∞∑
j1,··· ,jm=1

|T (ej1 , · · · , ejm)|
2mp

mp+p−2m

⎞⎠
mp+p−2m

2mp

≤ CK

m,p ‖T‖ , (1.1)
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when 2m ≤ p ≤ ∞, and

⎛⎝ ∞∑
j1,··· ,jm=1

|T (ej1 , · · · , ejm)|
p

p−m

⎞⎠
p−m

p

≤ DK

m,p ‖T‖ ,

when m < p ≤ 2m, for all continuous m-linear forms T : �p × · · · × �p → K (here, and 
henceforth, K = R or C). Both exponents are optimal, i.e., cannot be smaller without 
paying the price of a dependence on n arising on the respective constants. Following 
usual convention in the field, c0 is understood as the substitute of �∞ when the exponent 
p goes to infinity.

The investigation of the optimal constants of the Hardy–Littlewood inequalities is 
closely related to the fashionable, mysterious and puzzling investigation of the opti-
mal Bohnenblust–Hille inequality constants (see, for instance [12,15] and the references 
therein).

In this note we extend the following result of [1, Theorem 3]:

Theorem 1 (Albuquerque et al.). Let m ≥ 2 be a positive integer and m < p ≤ 2m − 2. 
Then, for all continuous m-linear forms T : �p×· · ·×�p → K and all positive integers n, 
we have
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≤ 2
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p ‖T‖ .

More precisely, using a variant of the technique introduced in [1], we find a family 
of inequalities extending the above result. Our result reads as follows, where Aλ0 is the 
optimal constant of the Khinchin inequality (defined in Section 2):

Theorem 2. If λ0 ∈ [1, 2) and

λ0m < p ≤ 2λ0 (m− 1)
2 − λ0

,

then
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