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Let (N, g) be a Riemannian manifold. Given a compact, connected and oriented 
submanifold M of N , we define the space of volume preserving embeddings 
Embμ(M, N) as the set of smooth embeddings f : M ↪→ N such that f∗μf = μ, 
where μf (resp. μ) is the Riemannian volume form on f(M) (resp. M) induced by 
the ambient metric g (the orientation on f(M) being induced by f).
In this article, we use the Nash–Moser inverse function Theorem to show that 
the set of volume preserving embeddings in Embμ(M, N) whose mean curvature 
is nowhere vanishing forms a tame Fréchet manifold, and determine explicitly the 
Euler–Lagrange equations of a natural class of Lagrangians.
As an application, we generalize the Euler equations of an incompressible fluid to 
the case of an “incompressible membrane” of arbitrary dimension moving in N .

© 2017 Elsevier B.V. All rights reserved.

0. Introduction

Fluid mechanics and infinite dimensional geometry already share a long and common history. In 1966, 
Arnold [3] suggested to regard the space of velocity fields of an incompressible fluid as the Lie algebra of 
the infinite dimensional Lie group of volume preserving diffeomorphisms:

SDiffμ(M) :=
{
φ ∈ Diff(M) |φ∗μ = μ

}
. (1)

Here M is the oriented manifold on which the fluid is living, μ is the volume form of M and Diff(M) is the 
group of all smooth diffeomorphisms of M . In this setting, Arnold interpreted the Euler equations of an 
incompressible fluid as a geodesic equation on SDiffμ(M) for an appropriate right-invariant metric.

It was not until the 70’s that Arnold’s vision of fluid mechanics could be made partially rigorous with 
the development of Banach and Hilbert manifolds. In [6], Ebin and Marsden considered volume preserving 
diffeomorphisms on a compact manifold M which are not smooth, but of Sobolev classes. In doing so, they 
obtained topological groups locally modelled on Hilbert spaces, and were able, following Arnold’s ideas, to 
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prove analytical results on the Euler equations. Their method is still an active research area (see for example 
[7,8,17]).

On the geometrical side, volume preserving diffeomorphisms which are not smooth are problematic. For, 
the left-multiplication Lφ : Diff(M) → Diff(M) , ψ �→ φ ◦ψ consumes derivatives of φ, and thus, subgroups 
of the group of diffeomorphisms whose elements are not smooth cannot be turned into genuine infinite 
dimensional Lie groups (left multiplication is not smooth). Hence, from a Lie group theoretical point of 
view, one has to consider the group of smooth volume preserving diffeomorphisms of (M, μ), i.e., the group 
SDiffμ(M).

For technical reasons, SDiffμ(M) can only be given a Lie group structure modelled on topological vector 
spaces which are more general than Banach and Hilbert spaces, and an inverse function theorem, applicable 
beyond the usual Banach space category, is necessary. To our knowledge, only two authors succeeded in doing 
this. The first was Omori who showed and used an inverse function theorem in terms of ILB-spaces (“inverse 
limit of Banach spaces”, see [19]), and later on, Hamilton with his category of tame Fréchet spaces together 
with the Nash–Moser inverse function Theorem (see [11]). Nowadays, it is nevertheless not uncommon to 
find mistakes or big gaps in the literature when it comes to the differentiable structure of SDiffμ(M), even 
in some specialized textbooks in infinite dimensional geometry. The case of M being non-compact is even 
worse, and no proof that SDiffμ(M) is a “Lie group” is available in this case.

A natural generalization of SDiffμ(M), with which we shall be concerned in this paper, is the space of 
volume preserving embeddings Embμ(M, N). This space is defined as follows. For a Riemannian manifold 
(N, g) and a compact, connected and oriented submanifold M of N ,

Embμ(M,N) :=
{
f ∈ Emb(M,N)

∣∣∣ f∗μf = μ
}
, (2)

where Emb(M, N) is the space of smooth embeddings from M into N , and where μf (resp. μ) is the 
Riemannian volume form on f(M) (resp. M) induced by the ambient metric g (the orientation on f(M)
being induced by f).

When M is an open subset of Rn with boundary,1 then it is possible to extend Arnold’s method by 
introducing a L2-metric on Embμ(M, N) and to show that the corresponding geodesics describe the dynamics 
of a liquid drop with free boundary. This has been discussed formally in [16], and rigorous results in this 
direction can be obtained using spaces of volume preserving embeddings of Sobolev classes, as pointed out 
to us by Sergiy Vasylkevych.2

In this paper, we focus on smooth volume preserving embeddings, i.e., on the space Embμ(M, N) as 
defined above. To this end, we adopt a rigorous infinite dimensional point of view based on Hamilton’s 
category of tame Fréchet manifolds, and determine explicitly a natural class of Lagrangian equations on 
Embμ(M, N). We allow M to be of arbitrary dimension, and we assume that it has no boundary.

More precisely, using the techniques developed by Hamilton in [11], as well as a generalization of the 
Helmholtz–Hodge decomposition Theorem for vector fields supported on submanifolds (Proposition 1.4), 
we are able, in Theorem 1.6, to show the following result: the space Embμ(M, N)× of volume preserving 
embeddings whose mean curvature is nowhere vanishing forms a tame Fréchet submanifold of Emb(M, N).
This result is a consequence of the Nash–Moser inverse function Theorem.

In [9], a stronger statement using other technics is made, namely that Embμ(M, N) itself is a Fréchet 
manifold (no condition is imposed on the mean curvature). There is, however, a gap, and an attentive reading 
of the proof of [9, Proposition 3.3], which is crucial, shows that the mean curvature cannot be identically 
zero. In the very recent paper [5], it is also shown among other results that the set of volume preserving 

1 In this paper, all manifolds have no boundary.
2 Private communication.
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