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In this paper, we study the backward–forward algorithm as a splitting method to 
solve structured monotone inclusions, and convex minimization problems in Hilbert 
spaces. It has a natural link with the forward–backward algorithm and has the same 
computational complexity, since it involves the same basic blocks, but organized 
differently. Surprisingly enough, this kind of iteration arises when studying the 
time discretization of the regularized Newton method for maximally monotone 
operators. First, we show that these two methods enjoy remarkable involutive 
relations, which go far beyond the evident inversion of the order in which the forward 
and backward steps are applied. Next, we establish several convergence properties 
for both methods, some of which were unknown even for the forward–backward 
algorithm. This brings further insight into this well-known scheme. Finally, we 
specialize our results to structured convex minimization problems, the gradient-
projection algorithms, and give a numerical illustration of theoretical interest.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The forward–backward algorithm was introduced by Lions and Mercier [25] and Passty [34] in order 
to find a zero of the sum of two maximally monotone operators. It can be naturally traced back to the 
projected-gradient method considered by Goldstein [22] and Levitin and Polyak [24] for constrained opti-
mization problems. Each iteration of the algorithm consists of a forward (explicit) step with respect to a 
cocoercive (thus Lipschitz-continuous) operator B, and a backward (implicit) step with respect to a general 
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maximally monotone operator A. A variant includes an additional relaxation step, which may improve its 
numerical performance.

Forward–backward algorithms have proved to be efficient tools for solving structured monotone inclu-
sions, and convex minimization problems. They provide parallel splitting methods which can be easily 
implemented, and which are particularly interesting for large-scale systems. They play an important role 
in signal and image processing, especially when dealing with sparse optimization. They are also adapted to 
domain decomposition techniques for PDE’s (see [7]).

An important number of contributions, dealing with various topics, have been devoted to the development 
of this flexible method. The forward–backward–forward algorithm deals with maximally monotone Lipschitz 
operators B that are not necessarily cocoercive (like linear skew-symmetric operators) with application to 
Lagrangian methods [17,13,41]. FISTA is an acceleration of the FB method based on Nesterov’s approach 
[15,32,31] (see also [20] for applications to signal recovery). Approximate data and computational errors 
are considered in [40] among many others. An inertial forward–backward algorithm is studied in [10]. In 
[8,33], the method is coupled with approximation or penalization techniques. Based on Kurdyka–Lojasiewicz 
property, convergence of forward–backward algorithms has been recently obtained in a nonconvex, nons-
mooth setting, for tame optimization and semi-algebraic problems [5,4,21,16]. For a recent account on these 
methods one can consult [6,13,15,19,40] and the bibliography therein.

To our knowledge, the existing methods of forward–backward type all consider the explicit step first and 
the implicit step next. The alternative, a backward–forward algorithm, has not been explored. Surprisingly 
enough, this kind of iteration arises when studying the time discretization of the regularized Newton method 
for maximally monotone operators proposed in [11], and thereafter extended to the case of structured 
monotone operators in [2]. A semi-implicit discretization of the dynamical system studied in [9] (different 
from the one considered in [10]) produces this type of methods as well.

Having in mind this connection with Newton-like systems, our original aim was to study backward–
forward algorithms both theoretically and numerically, and assess their performance, especially in connection 
with traditional forward–backward methods. As research progressed, we found out some remarkable invo-
lutive relationships between the forward and backward steps. These properties allow us to understand 
forward–backward algorithms more deeply and obtain convergence results beyond the classical monotone 
setting. Moreover, we can account for an over-relaxed combination step and deduce further properties of the 
limits. When coupled with a relaxation step, which may accelerate convergence, the forward–backward and 
the backward–forward are different. Yet they share the same computational complexity (a gradient and a 
proximal operation) and the same convergence properties. They account for the numerical observation that 
reversing the order of the gradient and the proximal step is not important.

The paper is organized as follows: In Section 2, we describe the forward–backward and backward–forward 
algorithms, point out some relevant facts concerning set-valued operators, and present some involutive
relations that allow to consider both algorithms in a somewhat unified manner. Convergence results – old 
and new – for both algorithms are presented in Section 3 in the operator setting. The case where the 
operators A and B derive from convex potentials is investigated in Section 4. A numerical illustration is 
given in Section 5, while further remarks and perspectives are commented in Section 6.

2. Forward–backward and backward–forward algorithms

Throughout this paper, H is a real Hilbert space with scalar product 〈., .〉 and norm ‖ · ‖. We mostly 
adopt the definitions and notations of [13].

Let F : H ⇒ H be a set-valued operator. The inverse operator F−1 : H ⇒ H is defined by the 
relation y ∈ F−1x ⇔ x ∈ Fy.

For γ ∈ R \ {0}, the resolvent of F of index γ is the operator JγF = (I + γF )−1. For γ ∈ R, the Yosida 
approximation of F of index γ is Fγ = (F−1 + γI)−1. In other words, y ∈ Fγx ⇔ y ∈ F (x − γy). When 
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