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In this paper we generalize some classical estimates involving the torsional rigidity 
and the principal frequency of a convex domain to a class of functionals related to 
some anisotropic nonlinear operators.
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1. Introduction

Let hK be the norm associated to a convex body K (see Section 3 for more details); given a domain 
Ω ⊂ RN with finite measure, we define the K-principal frequency, λK

1 , and the K-torsional rigidity, TK , as

λK
1 (Ω) = min

u∈W 1,2
0 (Ω)\{0}

∫
Ω h2

K(∇u) dx∫
Ω u2 dx

, (1.1)

and

TK(Ω) = max
u∈W 1,2

0 (Ω)\{0}

( ∫
Ω u dx

)2

∫
Ω h2

K(∇u) dx
. (1.2)
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It is convenient to introduce the function HK = h2
K/2; when HK is sufficiently smooth, we can write the 

Euler–Lagrange equations for the minimizers of the problems (1.1) and (1.2) to get a PDE interpretation of 
the above quantities. Indeed, the K-principal frequency is related to the eigenvalue problem

−ΔKu = λK
1 u in Ω, u = 0 on ∂Ω, (1.3)

while the K-torsional rigidity is the L1 norm of the solution u of:

−ΔKu = 1 in Ω, u = 0 on ∂Ω. (1.4)

Here ΔK denotes the Finsler–Laplace operator given by

ΔKu = div(DHK(∇u)). (1.5)

In the Euclidean case, occurring when K is the unitary ball B, (and hK(x) = |x|) the operator given in (1.5)
coincides with the Laplacian and λ1 and T are the usual first Dirichlet eigenvalue and torsional rigidity.

As in the linear case, the quantities defined in (1.1) and (1.2) are monotone, in opposite sense, with 
respect to the set inclusion, i.e. if Ω1 ⊂ Ω2 then

λK
1 (Ω1) ≥ λK

1 (Ω2) and TK(Ω1) ≤ TK(Ω2). (1.6)

Moreover, since HK is a homogeneous function of degree 2, the following scalings hold true:

λK
1 (tΩ) = t−2λK

1 (Ω) and TK(tΩ) = tN+2TK(Ω), t > 0. (1.7)

Shape optimization problems involving λ1 and T , or even more general spectral functionals of the form 
F(Ω) = Φ(λ1(Ω), T (Ω)), are widely studied in the literature (see for instance [2–6,11,12]) and, as it is well 
known, it is possible to get both lower and upper bounds for the principal frequency and the torsional rigidity 
in terms of quantities associated to the geometry of the domain Ω, such as, for instance the perimeter and 
the volume (just think to the Faber–Krahn inequality and the Saint-Venant theorem, see for instance the 
recent book [11]).

As it should not be unexpected, if we impose some further constraints in the class of admissible domains, 
we can get stronger estimates. The class of convex domains, for instance, has been considered by several 
authors: on one hand the a priori assumption of the convexity of the domain naturally arises in many 
situations; on the other, the class of convex sets has strong compactness properties which ensure the existence 
of extremal domains for a great number of geometric inequalities.

In this paper we are interested in estimates of the principal frequency and the torsional rigidity of a 
convex domain in terms of the inradius, RΩ, i.e. the radius of the biggest ball contained in Ω.

An immediate consequence of (1.6) and (1.7) is that, for the Euclidean case

λ1(Ω) ≤ λ1(BRΩ) = λ1(B1)R−2
Ω . (1.8)

A classical result by J. Hersch (see [13]) shows that for any convex domain Ω ⊂ R2 it holds

π2

4 R−2
Ω ≤ λ1(Ω), (1.9)

and the inequality is sharp: if we allow unbounded domains, equality case occurs when Ω is a strip, otherwise 
it is reached only asymptotically, by a sequence of rectangles with sides a � b. Hersch’s technique has been 
extended to convex domains of RN by M.H. Protter in [16] who proved the validity of (1.9) in every 
dimension.
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