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Perspective functions arise explicitly or implicitly in various forms in applied 
mathematics and in statistical data analysis. To date, no systematic strategy is 
available to solve the associated, typically nonsmooth, optimization problems. In 
this paper, we fill this gap by showing that proximal methods provide an efficient 
framework to model and solve problems involving perspective functions. We study 
the construction of the proximity operator of a perspective function under general 
assumptions and present important instances in which the proximity operator can 
be computed explicitly or via straightforward numerical operations. These results 
constitute central building blocks in the design of proximal optimization algorithms. 
We showcase the versatility of the framework by designing novel proximal algorithms 
for state-of-the-art regression and variable selection schemes in high-dimensional 
statistics.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Perspective functions appear, often implicitly, in various problems in areas as diverse as statistics, con-
trol, computer vision, mechanics, game theory, information theory, signal recovery, transportation theory, 
machine learning, disjunctive optimization, and physics (see the companion paper [7] for a detailed account). 
In the setting of a real Hilbert space G, the most useful form of a perspective function, first investigated in 
Euclidean spaces in [24], is the following.

Definition 1.1. Let ϕ : G → ]−∞,+∞] be a proper lower semicontinuous convex function and let recϕ be 
its recession function. The perspective of ϕ is
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ϕ̃ : R× G → ]−∞,+∞] : (η, y) �→

⎧⎪⎪⎨⎪⎪⎩
ηϕ(y/η), if η > 0;
(recϕ)(y), if η = 0;
+∞, if η < 0.

(1.1)

Many scientific problems result in minimization problems that involve perspective functions. In statistics, 
a prominent instance is the modeling of data via “maximum likelihood-type” estimation (or M-estimation) 
with a so-called concomitant parameter [17]. In this context, ϕ is a likelihood function, η takes the role of 
the concomitant parameter, e.g., an unknown scale or location of the assumed parametric distribution, and 
y comprises unknown regression coefficients. The statistical problem is then to simultaneously estimate the 
concomitant variable and the regression vector from data via optimization. Another important example in 
statistics [15], signal recovery [5], and physics [16] is the Fisher information of a function x : RN → ]0,+∞[, 
namely ∫

RN

‖∇x(t)‖2
2

x(t) dt, (1.2)

which hinges on the perspective function of the squared Euclidean norm (see [7] for further discussion).
In the literature, problems involving perspective functions are typically solved with a wide range of 

ad hoc methods. Despite the ubiquity of perspective functions, no systematic structuring framework has 
been available to approach these problems. The goal of this paper is to fill this gap by showing that they 
are amenable to solution by proximal methods, which offer a broad array of splitting algorithms to solve 
complex nonsmooth problems with attractive convergence guarantees [1,8,11,14]. The central element in 
the successful implementation of a proximal algorithm is the ability to compute the proximity operator 
of the functions present in the optimization problem. We therefore propose a systematic investigation of 
proximity operators for perspective functions and show that the proximal framework can efficiently solve 
perspective-function based problems, unveiling in particular new applications in high-dimensional statistics.

In Section 2, we introduce basic concepts from convex analysis and review essential properties of perspec-
tive function. We then study the proximity operator of perspective functions in Section 3. We establish a 
characterization of the proximity operator and then provide examples of computation for concrete instances. 
Section 4 presents new applications of perspective functions in high-dimensional statistics and demonstrates 
the flexibility and potency of the proposed framework to both model and solve complex problems in statis-
tical data analysis.

2. Notation and background

2.1. Notation and elements of convex analysis

Throughout, H, G, and K are real Hilbert spaces and H⊕G denotes their Hilbert direct sum. The symbol 
‖ · ‖ denotes the norm of a Hilbert space and 〈· | ·〉 the associated scalar product. The closed ball with center 
x ∈ K and radius ρ ∈ ]0,+∞[ is denoted by B(x; ρ).

A function f : K → ]−∞,+∞] is proper if dom f =
{
x ∈ K

∣∣ f(x) < +∞
}

�= ∅, coercive if 
lim‖x‖→+∞ f(x) = +∞, and supercoercive if lim‖x‖→+∞ f(x)/‖x‖ = +∞. Denote by Γ0(K) the class 
of proper lower semicontinuous convex functions from K to ]−∞,+∞], and let f ∈ Γ0(K). The conjugate 
of f is the function

f∗ : K → [−∞,+∞] : u �→
(

sup
x∈K

〈x | u〉 − f(x)
)
. (2.1)

It also belongs to Γ0(K) and f∗∗ = f . The subdifferential of f is the set-valued operator
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