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To impute the function of a variational inequality and the objective of a convex 
optimization problem from observations of (nearly) optimal decisions, previous 
approaches constructed inverse programming methods based on solving a convex 
optimization problem [17,7]. However, we show that, in addition to requiring 
complete observations, these approaches are not robust to measurement errors, 
while in many applications, the outputs of decision processes are noisy and only 
partially observable from, e.g., limitations in the sensing infrastructure. To deal 
with noisy and missing data, we formulate our inverse problem as the minimization 
of a weighted sum of two objectives: 1) a duality gap or Karush–Kuhn–Tucker 
(KKT) residual, and 2) a distance from the observations robust to measurement 
errors. In addition, we show that our method encompasses previous ones by 
generating a sequence of Pareto optimal points (with respect to the two objectives) 
converging to an optimal solution of previous formulations. To compare duality 
gaps and KKT residuals, we also derive new sub-optimality results defined by KKT 
residuals. Finally, an implementation framework is proposed with applications to 
delay function inference on the road network of Los Angeles, and consumer utility 
estimation in oligopolies.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Motivation

Many decision processes are modeled as a Variational Inequality (VI) or Convex Optimization (CO) 
problem [15,9]. However, the function that describes these processes are often difficult to estimate while 
their outputs (the decisions they describe) are often directly observable. For example, the traffic assignment 
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problem considers a road network in which each road segment is associated to a delay that is a function of 
the volume of traffic on the arc [22]. The Wardrop’s equilibrium principles [25] describe an equilibrium flow 
that is easily locally measurable by induction loop detectors or video cameras. While the delay functions 
are in general not observable, having accurate estimates of these functions is still crucial for urban planning. 
However, due to their cost of maintenance, traffic sensors are sparse, we thus present an approach robust 
to missing values and measurement errors. In consumer utility estimation, for example, the consumer is 
assumed to purchase various products from different companies in order to maximize a utility function 
minus the price paid, where the utility function measures the satisfaction the consumer receives from his 
purchases. In practice, the consumer’s utility function is difficult to estimate but the consumer purchases, 
which is a function of the products’ prices, are easily observable. We refer to [17,7] for more examples, e.g., 
value function estimation control.

1.2. Contributions and outline

Estimating the parameters of a process based on observations is related to various lines of work, e.g., 
inverse reinforcement learning in robotics [20,1], the inverse shortest path problem [10], recovering the 
parameters of the Lyapunov function given a linear control policy [8, §10.6]. The field of structural estimation
in economics estimates the parameters of observed equilibrium models, e.g. imputing production and demand 
functions [23,2,4]. In general, inverse problems have been studied quite extensively and we refer to [17,7] for 
more references on the subject. In [17] (resp. [7]), a program is proposed to impute a convex objective (resp. 
a VI function) based on complete observations of nearly optimal decisions. The program is solved via CO.

After reviewing preliminary results in VI and CO in Section 2 and formally stating the problem in 
Section 3, our contributions in the remainder of the present article is as follows. In Section 4, we demonstrate 
that the methods presented in [17,7] are in general not robust to noise and outliers in the data. In Section 5, 
we formulate our inverse problem as a weighted sum of a distance robs from the observations and residual 
functions req in the form of duality gaps or Karush–Kuhn–Tucker (KKT) residuals, and show that our 
method is robust to noise and outliers while it avoids the disjunctive nature of the complementary condition. 
In Section 6, we show that the proposed weighted sum defines a set of Pareto efficient points whose closure 
contains a solution to the programs proposed in [17,7]. Our method thus encompasses previous ones but 
performs better against noise and missing data. It also provides a conceptual way to recognize the implicit 
assumption of full noiseless observations made by previous inverse programming approaches. In Section 7, we 
compare the KKT residual and the duality gap and derive new sub-optimality results defined by the KKT 
residuals. In Section 8, an implementation framework is proposed. Finally, we apply our method to delay 
inference in the road network of Los Angeles, and consumer utility estimation and pricing in oligopolies in 
Sections 9 and 10.

2. Preliminaries

2.1. Variational inequality (VI) and convex optimization (CO)

VI is used to model a broad class of problems from economics, convex optimization, and game theory, 
see, e.g. [15], for a comprehensive treatment of the subject. Mathematically, a VI problem is defined as 
follows:

Definition 2.1. Given a closed, convex set K ⊆ R
n and a map F : K → R

n, the VI problem, denoted 
VI(K, F ), consists in finding a vector x ∈ K such that

F (x)T (u − x) ≥ 0, ∀u ∈ K (1)
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