ARTICLE IN PRESS

J. Math. Anal. Appl. $\bullet \bullet \bullet (\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

ELSEVIER

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

YJMAA:20795

www.elsevier.com/locate/jmaa

On the entropy minimization problem in Statistical Mechanics

Constantin Zălinescu^{a,b,*}

^a Faculty of Mathematics, University Al. I. Cuza, Bd. Carol I, Nr. 11, 700506 Iaşi, Romania
 ^b Institute of Mathematics Octav Mayer, Iaşi, Romania

ARTICLE INFO

Article history: Received 9 February 2016 Available online xxxx Submitted by H. Frankowska

Keywords: Entropy minimization Conjugate function Series of convex functions Value function Statistical mechanics

ABSTRACT

In many works on Statistical Mechanics and Statistical Physics, when deriving the distribution of particles of ideal gases, one uses the method of Lagrange multipliers in a formal way. In this paper we treat rigorously this problem for Bose–Einstein, Fermi–Dirac and Maxwell–Boltzmann entropies and present a complete study in the case of the Maxwell–Boltzmann entropy. Our approach is based on recent results on series of convex functions.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In Statistical Mechanics and Statistical Physics, when studying the distribution of the particles of an ideal gas, one considers the problem of maximizing

$$\sum_{i} \left[n_i \ln \left(\frac{g_i}{n_i} - a \right) - \frac{g_i}{a} \ln \left(1 - a \frac{n_i}{g_i} \right) \right]$$
(1.1)

with the constraints $\sum_i n_i = N$ and $\sum_i n_i \varepsilon_i = E$, where, as mentioned in [5, pp. 141–144], ε_i denotes the average energy of a level, g_i the (arbitrary) number of levels in the *i*th cell, and, in a particular situation, n_i is the number of particles in the *i*th cell. Moreover, a = -1 for the Bose–Einstein case, +1 for the Fermi–Dirac case, and 0 for the (classical) Maxwell–Boltzmann case. Even if nothing is said explicitly about the set I of the indices i, from several examples in the literature, I is (or may be) an infinite countable set; the examples

$$\varepsilon_l = l(l+1)h^2/2I, \quad g_l = (2l+1); \quad l = 0, 1, 2, \dots$$
 (1.2)

$$\varepsilon_{vK} = \varepsilon_0 + h\omega(v + \frac{1}{3}) + h^2 K(K+1)/2I; \quad v, K = 0, 1, 2, \dots$$
 (1.3)

 $\label{eq:http://dx.doi.org/10.1016/j.jmaa.2016.10.020} 0022-247X/©$ 2016 Elsevier Inc. All rights reserved.

Please cite this article in press as: C. Zălinescu, On the entropy minimization problem in Statistical Mechanics, J. Math. Anal. Appl. (2016), http://dx.doi.org/10.1016/j.jmaa.2016.10.020

^{*} Correspondence to: Faculty of Mathematics, University Al. I. Cuza, Bd. Carol I, Nr. 11, 700506 Iaşi, Romania. E-mail address: zalinesc@uaic.ro.

ARTICLE IN PRESS

C. Zălinescu / J. Math. Anal. Appl. • • • $(\bullet \bullet \bullet \bullet) \bullet \bullet \bullet - \bullet \bullet \bullet$

$$\varepsilon(n_x, n_y, n_z) = \frac{h^2}{8mL^2} (n_x^2 + n_y^2 + n_z^2); \quad n_x, n_y, n_z = 1, 2, 3, \dots$$
(1.4)

are considered in [3, p. 76], [4, p. 138] and [5, p. 10], respectively.

Relation (1.1) suggests the consideration of the following functions defined on \mathbb{R} with values in $\overline{\mathbb{R}}$, called, respectively, Bose–Einstein, Fermi–Dirac and Maxwell–Boltzmann entropies:

$$E_{BE}(u) := \begin{cases} u \ln u - (1+u) \ln(1+u) & \text{if } u \in \mathbb{R}_+, \\ \infty & \text{if } u \in \mathbb{R}_-^*, \end{cases}$$
(1.5)

$$E_{FD}(u) := \begin{cases} u \ln u + (1-u) \ln(1-u) & \text{if } u \in [0,1], \\ \infty & \text{if } u \in \mathbb{R} \setminus [0,1], \end{cases}$$
(1.6)

$$E_{MB}(u) := \begin{cases} u(\ln u - 1) & \text{if } u \in \mathbb{R}_+, \\ \infty & \text{if } u \in \mathbb{R}_-^*, \end{cases}$$
(1.7)

where $0 \ln 0 := 0$ and $\mathbb{R}_+ := [0, \infty[, \mathbb{R}^*_+ :=]0, \infty[, \mathbb{R}_- := -\mathbb{R}_+, \mathbb{R}^*_- := -\mathbb{R}^*_+$. We have that

$$E'_{BE}(u) = \ln \frac{u}{1+u} \ \forall u \in \mathbb{R}^*_+, \quad E'_{FD}(u) = \ln \frac{u}{1-u} \ \forall u \in]0,1[, \quad E'_{MB}(u) = \ln u \ \forall u \in \mathbb{R}^*_+.$$

Observe that E_{BE} , E_{MB} , E_{FD} are convex (even strictly convex on their domains), derivable on the interiors of their domains with increasing derivatives, and $E_{BE} \leq E_{MB} \leq E_{FD}$ on \mathbb{R} . The (convex) conjugates of these functions are

$$E_{MB}^*(t) = e^t \ \forall t \in \mathbb{R}, \quad E_{FD}^*(t) = \ln(1 + e^t) \ \forall t \in \mathbb{R}, \quad E_{BE}^*(t) = \begin{cases} -\ln(1 - e^t) & \text{if } t \in \mathbb{R}_-^*, \\ \infty & \text{if } t \in \mathbb{R}_+. \end{cases}$$

Moreover, for $W \in \{E_{BE}, E_{MB}, E_{FD}\}$ we have that $\partial W(u) = \{W'(u)\}$ for $u \in int(\operatorname{dom} W)$ and $\partial W(u) = \emptyset$ elsewhere; furthermore,

$$(W^*)'(t) = \frac{e^t}{1 + a_W e^t} \quad \forall t \in \operatorname{dom} W^*,$$
(1.8)

where (as above)

$$a_W := \begin{cases} -1 & \text{if } W = E_{BE}, \\ 0 & \text{if } W = E_{MB}, \\ 1 & \text{if } W = E_{FD}. \end{cases}$$
(1.9)

The maximization of (1.1) subject to the constraints $\sum_{i} n_{i} = N$ and $\sum_{i} n_{i} \varepsilon_{i} = E$ is equivalent to the minimization problem

minimize
$$\sum_{i} g_i W(\frac{n_i}{g_i})$$
 s.t. $\sum_{i} n_i = N$, $\sum_{i} n_i \varepsilon_i = E$,

where W is one of the functions E_{BE} , E_{FD} , E_{MB} defined in (1.5), (1.6), (1.7), and $g_i \ge 1$.

In many books treating this subject (see [4, pp. 119, 120], [3, pp. 15, 16], [5, p. 144], [1, p. 39]) the above problem is solved using the Lagrange multipliers method in a formal way.

Our aim is to treat rigorously the minimization of Maxwell–Boltzmann, Bose–Einstein and Fermi–Dirac entropies with the constraints $\sum_{i \in I} u_i = u$, $\sum_{i \in I} \sigma_i u_i = v$ in the case in which I is an infinite countable set. Unfortunately, we succeed to do a complete study only for the Maxwell–Boltzmann entropy. For a short description of the results see Conclusions.

 $Please \ cite \ this \ article \ in \ press \ as: \ C. \ Zǎlinescu, \ On \ the \ entropy \ minimization \ problem \ in \ Statistical \ Mechanics, \ J. \ Math. \ Anal. \ Appl. \ (2016), \ http://dx.doi.org/10.1016/j.jmaa.2016.10.020$

2

Download English Version:

https://daneshyari.com/en/article/5774417

Download Persian Version:

https://daneshyari.com/article/5774417

Daneshyari.com