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In many works on Statistical Mechanics and Statistical Physics, when deriving the 
distribution of particles of ideal gases, one uses the method of Lagrange multipliers 
in a formal way. In this paper we treat rigorously this problem for Bose–Einstein, 
Fermi–Dirac and Maxwell–Boltzmann entropies and present a complete study in the 
case of the Maxwell–Boltzmann entropy. Our approach is based on recent results 
on series of convex functions.
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1. Introduction

In Statistical Mechanics and Statistical Physics, when studying the distribution of the particles of an 
ideal gas, one considers the problem of maximizing

∑
i

[
ni ln

(
gi
ni

− a

)
− gi

a
ln

(
1 − a

ni

gi

)]
(1.1)

with the constraints 
∑

i ni = N and 
∑

i niεi = E, where, as mentioned in [5, pp. 141–144], εi denotes the 
average energy of a level, gi the (arbitrary) number of levels in the ith cell, and, in a particular situation, 
ni is the number of particles in the ith cell. Moreover, a = −1 for the Bose–Einstein case, +1 for the 
Fermi–Dirac case, and 0 for the (classical) Maxwell–Boltzmann case. Even if nothing is said explicitly about 
the set I of the indices i, from several examples in the literature, I is (or may be) an infinite countable set; 
the examples

εl = l(l + 1)h2/2I, gl = (2l + 1); l = 0, 1, 2, . . . (1.2)

εvK = ε0 + hω(v + 1
3) + h2K(K + 1)/2I; v,K = 0, 1, 2, . . . (1.3)
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ε(nx, ny, nz) = h2

8mL2 (n2
x + n2

y + n2
z); nx, ny, nz = 1, 2, 3, . . . (1.4)

are considered in [3, p. 76], [4, p. 138] and [5, p. 10], respectively.
Relation (1.1) suggests the consideration of the following functions defined on R with values in R, called, 

respectively, Bose–Einstein, Fermi–Dirac and Maxwell–Boltzmann entropies:

EBE(u) :=
{

u ln u− (1 + u) ln(1 + u) if u ∈ R+,

∞ if u ∈ R
∗
−,

(1.5)

EFD(u) :=
{

u ln u + (1 − u) ln(1 − u) if u ∈ [0, 1],
∞ if u ∈ R \ [0, 1],

(1.6)

EMB(u) :=
{

u(ln u− 1) if u ∈ R+,

∞ if u ∈ R
∗
−,

(1.7)

where 0 ln 0 := 0 and R+ := [0, ∞[, R∗
+ := ]0,∞[, R− := −R+, R∗

− := −R
∗
+. We have that

E′
BE(u) = ln u

1 + u
∀u ∈ R

∗
+, E′

FD(u) = ln u

1 − u
∀u ∈ ]0, 1[, E′

MB(u) = ln u ∀u ∈ R
∗
+.

Observe that EBE , EMB , EFD are convex (even strictly convex on their domains), derivable on the interiors 
of their domains with increasing derivatives, and EBE ≤ EMB ≤ EFD on R. The (convex) conjugates of 
these functions are

E∗
MB(t) = et ∀t ∈ R, E∗

FD(t) = ln(1 + et) ∀t ∈ R, E∗
BE(t) =

{
− ln(1 − et) if t ∈ R

∗
−,

∞ if t ∈ R+.

Moreover, for W ∈ {EBE , EMB, EFD} we have that ∂W (u) = {W ′(u)} for u ∈ int(domW ) and ∂W (u) = ∅
elsewhere; furthermore,

(W ∗)′(t) = et

1 + aW et
∀t ∈ domW ∗, (1.8)

where (as above)

aW :=

⎧⎪⎨⎪⎩
−1 if W = EBE ,

0 if W = EMB ,

1 if W = EFD.

(1.9)

The maximization of (1.1) subject to the constraints 
∑

i ni = N and 
∑

i niεi = E is equivalent to the 
minimization problem

minimize 
∑

i giW (ni

gi
) s.t. 

∑
i ni = N , 

∑
i niεi = E,

where W is one of the functions EBE , EFD, EMB defined in (1.5), (1.6), (1.7), and gi ≥ 1.
In many books treating this subject (see [4, pp. 119, 120], [3, pp. 15, 16], [5, p. 144], [1, p. 39]) the above 

problem is solved using the Lagrange multipliers method in a formal way.
Our aim is to treat rigorously the minimization of Maxwell–Boltzmann, Bose–Einstein and Fermi–Dirac 

entropies with the constraints 
∑

i∈I ui = u, 
∑

i∈I σiui = v in the case in which I is an infinite countable 
set. Unfortunately, we succeed to do a complete study only for the Maxwell–Boltzmann entropy. For a short 
description of the results see Conclusions.
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