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Interior Controllability of Semilinear Degenerate Wave

Equations∗

Muming Zhang† and Hang Gao‡

Abstract

In this paper, we prove the existence of interior controls for one-dimensional semilinear

degenerate wave equations. By duality argument, we reduce the problem to an observability

estimate for the linear degenerate wave equation. First, the unique continuation for the degen-

erate wave equation is established. By means of this and the multiplier method, we obtain the

observability estimate.
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1 Introduction and main result

Let us consider the following semilinear degenerate wave equation:⎧⎪⎪⎨
⎪⎪⎩

ytt − (xpyx)x + f(y) = χωh (x, t) ∈ Q,

y(0, t) = 0, y(s, t) = 0 t ∈ (0, T ),

y(x, 0) = y0(x), yt(x, 0) = y1(x) x ∈ Ω,

(1.1)

with h ∈ L2(ω×(0, T )) denoting the control, y denoting the state, (y0, y1) being an arbitrary initial

value, and f ∈ C1(R) being a globally Lispchitz continuous function. In (1.1), T > 0, s > 0,

Ω = (0, s) and Q = Ω × (0, T ). Let 0 < α < β < s and ω = (α, β) be a nonempty open subset of

Ω. χω denotes the characteristic function of ω. Take p ∈ (0, 1).

To begin with, we define a linear space H1
p (Ω) by:

H1
p (Ω) =

{
f ∈ L2(Ω)

∣∣ f is absolutely continuous in Ω, x
p
2 fx ∈ L2(Ω) and f(0) = f(s) = 0

}
.

Then H1
p (Ω) is a Hilbert space, whose inner product is

(f, g)H1
p(Ω) =

∫
Ω
(fg + xpfxgx)dx, ∀ f, g ∈ H1

p (Ω).
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