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This paper is devoted to study the planar polynomial system:

ẋ = ax− y + Pn(x, y), ẏ = x + ay + Qn(x, y),

where a ∈ R and Pn, Qn are homogeneous polynomials of degree n ≥ 2. Denote
ψ(θ) = cos(θ) · Qn

(
cos(θ), sin(θ)

)
− sin(θ) · Pn

(
cos(θ), sin(θ)

)
. We prove that the 

system has at most 1 limit cycle surrounding the origin provided (n − 1)aψ(θ) +
ψ̇(θ) �= 0. Furthermore, this upper bound is sharp. This is maybe the first uniqueness 
criterion, which only depends on a (linear) condition of ψ, for the limit cycles of this 
kind of systems. We show by examples that in many cases, the criterion is applicable 
while the classical ones are invalid. The tool that we mainly use is a new estimate 
for the number of limit cycles of Abel equation with coefficients of indefinite signs. 
Employing this tool, we also obtain another geometric criterion which allows the 
system to possess at most 2 limit cycles surrounding the origin.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction and statements of main results

One of the significant problems in the qualitative theory of real planar differential systems is to control 
the number of limit cycles for a given class of polynomial systems, which is originated from the second part 
of Hilbert’s 16th problem.

In this paper we restrict our study to the number of limit cycles surrounding the origin for the planar 
polynomial system with homogeneous nonlinearities:
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dx

dt
= ax− y + Pn(x, y),

dy

dt
= x + ay + Qn(x, y),

(1)

where Pn, Qn are homogeneous polynomials of degree n ≥ 2.
As we know, (1) is a system which has been extensively studied and gained wide attention in decades. 

One of the particularities of this system is that each limit cycle surrounding the origin can be expressed in 
polar coordinates as r = r(θ), with r(θ) being a smooth periodic function, see for instance [11], [14], [18] and 
[19], etc. This particularity provides us an opportunity to consider the Hilbert’s 16th problem in a natural 
and simple way.

So far, plenty of works have been carried out for the bifurcation of (1) with small perturbations, see for 
instance [5], [15], [19], [24], [25], [29], [33] and the references therein. In contrast, only a few results for the 
non-bifurcation case are obtained. Here we summarize the representative ones as below: Let

ϕ(θ) = cos(θ) · Pn

(
cos(θ), sin(θ)

)
+ sin(θ) ·Qn

(
cos(θ), sin(θ)

)
,

ψ(θ) = cos(θ) ·Qn

(
cos(θ), sin(θ)

)
− sin(θ) · Pn

(
cos(θ), sin(θ)

)
.

(2)

(I) If ϕ(θ) − aψ(θ) �≡ 0 does not change sign, then (1) has at most 1 limit cycle surrounding the origin (see 
Coll, Gasull and Prohens [14]).

(II) If ψ(θ)
(
ϕ(θ) −aψ(θ)

)
�≡ 0 does not change sign, then (1) has at most 1 (resp. 2) limit cycle(s) surrounding 

the origin when n is even (resp. odd) (see Carbonell and Llibre [11]).
(III) If (n − 1)

(
ϕ(θ) − 2aψ(θ)

)
− ψ̇(θ) �≡ 0 does not change sign, then (1) has at most 2 limit cycles 

surrounding the origin (see Gasull and Llibre [18]).
(IV) If either (n − 1)

(
ϕ(θ) − 2aψ(θ)

)
− ψ̇(θ) ≡ 0, or ψ(θ)

(
ϕ(θ) − aψ(θ)

)
≡ 0, then (1) has at most 1 limit 

cycle surrounding the origin (see Gasull and Llibre [18]).

There are several powerful tools to study system (1) in the papers mentioned above. One of them is the 
Abel equation

ẋ = dx

dt
= S(t, x) = a3(t)x3 + a2(t)x2 + a1(t)x, (3)

where x ∈ R and ai ∈ C∞([0, 1]), i = 1, 2, 3.
In fact, system (1) in polar coordinates can be written in the form

d

dt
(θ, r)T = v �

(
1 + rn−1ψ(θ), ar + rnϕ(θ)

)T
. (4)

It is known that the limit cycles surrounding the origin of system (1) do not intersect the curve 1 +
rn−1ψ(θ) = 0 (see [11], [14], [18], etc). Therefore, these limit cycles can be investigated by equation

dr

dθ
= ar + rnϕ(θ)

1 + rn−1ψ(θ) , θ ∈ [0, 2π]. (5)

Furthermore, using the transformation introduced by Cherkas [12]

ρ = rn−1

1 + rn−1ψ(θ) , θ = 2πτ, (6)

equation (5) becomes an Abel equation



Download English Version:

https://daneshyari.com/en/article/5774675

Download Persian Version:

https://daneshyari.com/article/5774675

Daneshyari.com

https://daneshyari.com/en/article/5774675
https://daneshyari.com/article/5774675
https://daneshyari.com

