

Bilinear forms on homogeneous Sobolev spaces **

Carme Cascante ${ }^{\text {a,b,* }}$, Joan Fàbrega ${ }^{\text {a }}$, Joaquín M. Ortega ${ }^{\text {a }}$
a Dept. Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via 585, 08071 Barcelona, Spain
b Barcelona Graduate School of Mathematics (BGSMath), Spain

A R T I C L E I N F O

Article history:

Received 20 February 2017
Available online xxxx
Submitted by P.G. Lemarie-Rieusset
Keywords:
Bilinear form
Sobolev spaces
Fractional laplacian
Riesz potential

A B S T R A C T

In this paper we characterize the boundedness of the bilinear form defined by

$$
(f, g) \in \dot{H}^{s}(\mathbb{R}) \times \dot{H}^{s}(\mathbb{R}) \rightarrow \int_{\mathbb{R}}(-\Delta)^{s / 2}(f g)(x)(-\Delta)^{s / 2}(b)(x) d x
$$

in the product of homogeneous Sobolev spaces $\dot{H}^{s}(\mathbb{R}) \times \dot{H}^{s}(\mathbb{R}), 0<s<1 / 2$. We deduce a characterization of the space of pointwise multipliers from $\dot{H}^{s}(\mathbb{R})$ to its dual $\dot{H}^{-s}(\mathbb{R})$ in terms of trace measures.
© 2017 Elsevier Inc. All rights reserved.

1. Introduction

If $-d / 2<t$, and f is in the Schwartz class, $\mathcal{S}\left(\mathbb{R}^{d}\right)$, we define the fractional laplacian $(-\Delta)^{t}$ as the distribution defined by

$$
(-\Delta)^{t}(f)(x):=\mathcal{F}^{-1}\left((2 \pi|x|)^{2 t} \mathcal{F}(f)(x)\right)
$$

where \mathcal{F} denotes the Fourier transform.
If $0<t<d / 2$, then $(-\Delta)^{-t}$ can be described in terms of the Riesz integral operator, that is, $(-\Delta)^{-t}=$ $I_{2 t}$, where

$$
I_{2 t}(f)(x):=c_{d, 2 t} \int_{\mathbb{R}^{d}} \frac{f(y)}{|x-y|^{d-2 t}} d y, \quad f \in \mathcal{S}\left(\mathbb{R}^{d}\right)
$$

for some positive constant $c_{d, 2 t}$.

[^0]We recall that, for $0<t<1$, there is an equivalent definition of the fractional Laplacian in terms of singular integrals:

$$
\begin{equation*}
(-\Delta)^{t} f(x):=C_{d, t} P \cdot V \cdot \int_{\mathbb{R}^{d}} \frac{f(x)-f(y)}{|x-y|^{d+2 t}} d y, \quad f \in \mathcal{S}\left(\mathbb{R}^{d}\right) \tag{1.1}
\end{equation*}
$$

where $C_{d, t}$ is a positive constant and $P . V$. means principal value.
The fractional homogeneous Sobolev space $\dot{H}^{s}\left(\mathbb{R}^{d}\right),|s|<d / 2$, is the completion of the space of compactly supported C^{∞} functions on $\mathbb{R}^{d}, \mathcal{D}\left(\mathbb{R}^{d}\right)$, with respect to the norm

$$
\|f\|_{\dot{H}^{s}\left(\mathbb{R}^{d}\right)}:=\left\|(-\Delta)^{s / 2}(f)\right\|_{L^{2}\left(\mathbb{R}^{d}\right)}
$$

One of the reasons to restrict ourselves to the case where $0<2 s<d$ is Sobolev inequality that proves that in this case, $\dot{H}^{s}\left(\mathbb{R}^{d}\right) \subset L^{q}\left(\mathbb{R}^{d}\right)$, where $q=2 d /(d-2 s)$. So $\dot{H}^{s}\left(\mathbb{R}^{d}\right)$ can be identified as the space of all the functions on $L^{q}\left(\mathbb{R}^{d}\right)$ such that $\|f\|_{\dot{H}^{s}\left(\mathbb{R}^{d}\right)}<\infty$.

It is well known that if $0<2 s<d$, then $\dot{H}^{s}\left(\mathbb{R}^{d}\right)=I_{s}\left(L^{2}\left(\mathbb{R}^{d}\right)\right)$.
These spaces satisfy $\mathcal{S}\left(\mathbb{R}^{d}\right) \subset \dot{H}^{s}\left(\mathbb{R}^{d}\right) \subset \mathcal{S}^{\prime}\left(\mathbb{R}^{d}\right)$ and, by Plancherel's formula, we also have that the dual of $\dot{H}^{s}\left(\mathbb{R}^{d}\right)$ is $\dot{H}^{-s}\left(\mathbb{R}^{d}\right)$ with the natural $L^{2}\left(\mathbb{R}^{d}\right)$-pairing.

Some classical references for the fractional laplacian $(-\Delta)^{t}$, are the books of $[6,14]$ (see also the book of [8] and the references therein). The characterization of the fractional laplacian in terms of singular integrals can be found, for instance, in [5,15].

The main goal of this paper is the study of the boundedness of the bilinear form on $\dot{H}^{s}\left(\mathbb{R}^{d}\right)$ with symbol $b \in \dot{H}^{s}\left(\mathbb{R}^{d}\right)$ defined by

$$
\Lambda_{b}(f, g):=\int_{\mathbb{R}^{d}}(-\Delta)^{s / 2}(f g)(x)(-\Delta)^{s / 2}(b)(x) d x, \quad f, g \in \mathcal{D}\left(\mathbb{R}^{d}\right)
$$

This boundedness, via Plancherel's formula is equivalent to

$$
\left|\int_{\mathbb{R}^{d}}(f g)(x)(-\Delta)^{s}(b)(x) d x\right| \lesssim\|f\|_{\dot{H}^{s}\left(\mathbb{R}^{d}\right)}\|g\|_{\dot{H}^{s}\left(\mathbb{R}^{d}\right)}
$$

Observe then that the boundedness of the bilinear form Λ_{b} is equivalent to the fact that $(-\Delta)^{s}(b)$ is a pointwise multiplier from $\dot{H}^{s}\left(\mathbb{R}^{d}\right)$ to its dual $\dot{H}^{-s}\left(\mathbb{R}^{d}\right)$. We denote this space of multipliers by $\operatorname{Mult}\left(\dot{H}^{s}\left(\mathbb{R}^{d}\right) \rightarrow \dot{H}^{-s}\left(\mathbb{R}^{d}\right)\right)$.

For $s=1$, in [11], Maz'ya and Verbitsky proved that $\varphi \in \operatorname{Mult}\left(\dot{H}^{1}\left(\mathbb{R}^{d}\right) \rightarrow \dot{H}^{-1}\left(\mathbb{R}^{d}\right)\right)$ if and only if $(-\Delta)^{-1 / 2} \varphi \in \operatorname{Mult}\left(\dot{H}^{1}\left(\mathbb{R}^{d}\right) \rightarrow L^{2}\left(\mathbb{R}^{d}\right)\right)$. Thus, they reduced the characterization of the inequality

$$
\left|\int_{\mathbb{R}^{d}} u(x) v(x) \varphi(x) d x\right| \lesssim\|u\|_{\dot{H}^{1}\left(\mathbb{R}^{d}\right)}\|v\|_{\dot{H}^{1}\left(\mathbb{R}^{d}\right)},
$$

where φ may change sign, to the inequality

$$
\int_{\mathbb{R}^{d}}|u(x)|^{2}\left|(-\Delta)^{-1 / 2} \varphi(x)\right|^{2} d x \lesssim \int_{\mathbb{R}^{d}}|\nabla u(x)|^{2} d x
$$

where $\left|(-\Delta)^{-1 / 2} \varphi(x)\right|^{2} d x$ is now a non-negative measure. These estimates are of big interest in different aspects of the theory of the Schrödinger operator $(-\Delta+V)$ in \mathbb{R}^{d}. In [12], the same authors proved the non-homogeneous case and an analogous result for $s=1 / 2$.

https://daneshyari.com/en/article/5774685

Download Persian Version:

https://daneshyari.com/article/5774685

Daneshyari.com

[^0]: रु The research was supported in part by Ministerio de Economía y Competitividad, Spain, projects MTM2014-51834-P and MTM2015-69323-REDT, and Generalitat de Catalunya, project 2014SGR289. First author was supported in part by Ministerio de Economía y Competitividad, Spain, project MDM-2014-0445 (María de Maeztu).

 * Corresponding author.

 E-mail addresses: cascante@ub.edu (C. Cascante), joan_fabrega@ub.edu (J. Fàbrega), ortega@ub.edu (J.M. Ortega).
 http://dx.doi.org/10.1016/j.jmaa.2017.08.033
 0022-247X/© 2017 Elsevier Inc. All rights reserved.

