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APPROXIMATION OF MAXIMUM OF GAUSSIAN RANDOM FIELDS

ENKELEJD HASHORVA, OLEG SELEZNJEV, AND ZHONGQUAN TAN

Abstract: This contribution is concerned with Gumbel limiting results for supremum Mn = supt∈[0,Tn]|Xn(t)|
with Xn,n ∈ N2 centered Gaussian random fields with continuous trajectories. We show first the convergence of

a related point process to a Poisson point process thereby extending previous results obtained in [1] for Gaussian

processes. Furthermore, we derive Gumbel limit results for Mn as n → ∞ and show a second-order approximation

for E{Mp
n}1/p for any p ≥ 1.
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1. Introduction

Classical results on extremes of Gaussian processes show that for X(t), t ≥ 0 a centered Gaussian process with

continuous sample paths, the tail asymptotic behaviour of M(T ) = supt∈[0,T ] X(t) can be exactly derived for some

classes of both stationary and non-stationary X. Namely, if X is stationary with correlation function satisfying

(1) r(t) = 1− C|t|α + o(|t|α) as t → 0

for some α ∈ (0, 2], C > 0, and r(t) < 1, ∀t �= 0, then (see [2, 3, 4])

P (M(T ) > u) ∼ TC1/αHαu
2/αP (X(0) > u) as u → ∞.(2)

Here ∼ means asymptotic equivalence of two real-valued functions when the argument tends to some specific point

and Hα is the Pickands constant defined by (see, e.g., [5, 4] and the recent contributions [6, 7])

Hα = lim
T→∞

T−1E

{
sup

t∈[0,T ]

e
√
2Bα(t)−tα

}
= E

{
supt∈R

e
√
2Bα(t)−|t|α∫

t∈R
e
√
2Bα(t)−|t|α dt

}
,

with {Bα(t), t ∈ R} a standard fractional Brownian motion (fBm) with Hurst index α/2, i.e., Bα is a centered

self-similar Gaussian process with Hurst index α/2, stationary increments and E{B2
α(t)} = |t|α, t ∈ R.

If X is a centered non-stationary Gaussian process with continuous sample paths and variance function σ2(t) that

has a unique point of maximum in [0, T ], say, 0 with σ(0) = 1, then in view of [4], we have

P (M(T ) > u) ∼ Kα,βu
max(0,2/α−2/β)P (X(0) > u) ,(3)

provided that for α ∈ (0, 2], a > 0, the correlation function r(s, t) satisfies

1− r(s, t) = a|t− s|α + o(|t− s|α) as s, t → 0,

and for b, β positive

1− σ(t) = b|t|β + o(|t|β) as t → 0,(4)

assuming additionally that X satisfies a global Hölder condition. Here Kα,β = 2Hαa
1/αΓ(1/β + 1)b−1/β with Γ(·)

the Euler Gamma function, for α < β; Kα,β = 1 for α > β and Kα,α equals the Piterbarg constant

Hb/a
α = lim

T→∞
E

{
sup

t∈[0,T ]

e
√
2Bα(t)−(1+b/a)tα

}
∈ (0,∞).
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