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The theory of turbulent Newtonian fluids shows that the choice of the boundary 
condition is a relevant issue because it can modify the behavior of a fluid by creating 
or avoiding a strong boundary layer. In this study, we consider stochastic second 
grade fluids filling a two-dimensional bounded domain with the Navier-slip boundary 
condition (with friction). We prove the well-posedness of this problem and establish 
a stability result. Our stochastic model involves a multiplicative white noise and 
a convective term with third order derivatives, which significantly complicate the 
analysis.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The study considers stochastic incompressible fluids of second grade, which are a special class of non-
Newtonian fluids. Unlike Newtonian fluids where only the stretching tensor appears in the characterization 
of the stress response to a deformation fluid, the Cauchy stress tensor T of non-Newtonian fluids is defined 
by

T = −πI + νA1 + α1A2 + α2 A
2
1,

where the first term −πI is due to the incompressibility of the fluid and A1, A2 are the two first Rivlin–
Ericksen tensors (cf. [35])

A1(y) = ∇y + (∇y)� and A2(y) = Ȧ1(y) + A1(y)∇y + (∇y)� A1(y),

where y denotes the velocity of the fluid, the superposed dot is the material time derivative, ν is the 
kinematic viscosity of the fluid, and α1, α2 are constant material moduli. A previous study [18] showed 
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that the thermodynamic laws and stability principles impose α1 ≥ 0 and α1 + α2 = 0. We set α = α1 and 
assume that α1 > 0.

It is well known that small random perturbations in turbulent fluids can produce relevant macroscopic 
effects. Therefore, the incorporation of stochastic white noise force in the Navier–Stokes equations [3] is 
widely recognized as important for understanding turbulence phenomena. Thus, in [2] (see Lemma 2.2), the 
stochastic Navier–Stokes equations were deduced from fundamental principles by showing that the stochastic 
Navier–Stokes equations are a real physical model. The stochastic Navier–Stokes equations are now quite 
well understood (e.g., see [16,20,30,36], and the references therein). However, few results have been reported 
regarding stochastic non-Newtonian fluids [17,32–34]. In this study, we consider the stochastic second grade 
equations with multiplicative noise given by{

∂
∂t (Y − αΔY ) = νΔY − curl (Y − αΔY ) × Y −∇π + U + G(t, Y ) Ẇt,

divY = 0 in O × (0, T ),
(1.1)

where U is a body force, G(t, Y ) Ẇt is a multiplicative white noise, and O is a bounded domain of R2 with 
a boundary Γ.

Studying this system requires suitable boundary conditions on the boundary Γ of the domain. The 
Dirichlet boundary condition given by

Y = 0 on Γ

is accepted as an appropriate boundary condition and it is the most usual. Another physical relevant 
boundary condition considered in previous studies is the Navier boundary condition

Y · n = 0, [2(n ·DY ) + γY ] · τ = 0 on Γ, (1.2)

where n = (n1, n2) and τ = (−n2, n1) are the unit normal and tangent vectors, respectively, to the bound-
ary Γ, DY = ∇Y +(∇Y )�

2 is the symmetric part of the velocity gradient, and γ > 0 is a friction coefficient 
on Γ.

The stochastic partial differential equations (1.1) with the Dirichlet boundary condition were studied by 
[32] and [34]. In the former study, tightness arguments were used together with the Skorohod theorem to 
prove the existence of a weak stochastic solution in the sense that the Brownian motion, which is part of the 
solution, was not given in advance; whereas in the second study, the existence and uniqueness of a strong 
stochastic solution was proved. In pioneering studies [31] and [13] (see also [12]), the deterministic second 
grade equations with the Dirichlet boundary condition were studied mathematically for the first time, while 
[6] investigated the deterministic equations with a particular Navier boundary condition (without friction, 
i.e., when γ = 0). The physical interpretations of these second grade equations were given by [8,18,19,
21,23], and [24]. It is relevant to recall that the deterministic methods are based on the Faedo–Galerkin 
approximation method and a priori estimates. Then, compactness arguments can be used to pass to the 
limit of the respective approximate equations in the distributional sense. Unfortunately, for the stochastic 
partial differential equations, a priori estimates are not sufficient to pass to the limit of the approximate 
equations due to the lack of regularity on the time and stochastic variables. Thus, in order to obtain a strong 
stochastic solution, we should verify that the sequence of the Galerkin approximations converges strongly 
in some adequate topology.

We should note that even if the Dirichlet boundary condition is widely accepted as an appropriate bound-
ary condition at the surface of the contact between a fluid and a solid, it is also a source of many problems 
because it attaches fluid particles to the boundary, thereby creating a strong boundary layer (cf. [15,25,26,
28]). In addition, the Navier boundary condition allows the slippage of the fluid on the boundary, which 
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