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We consider the Euler equations of incompressible inviscid fluid dynamics. We dis-
cuss a variational formulation of the governing equations in Lagrangian coordinates. 
We compute variational symmetries of the action functional and generate corre-
sponding conservation laws in Lagrangian coordinates. We clarify and demonstrate 
relationships between symmetries and the classical balance laws of energy, linear 
momentum, center of mass, angular momentum, and the statement of vorticity ad-
vection. Using a newly obtained scaling symmetry, we obtain a new conservation 
law for the Euler equations in Lagrangian coordinates in n-dimensional space. The 
resulting integral balance relates the total kinetic energy to a new integral quantity 
defined in Lagrangian coordinates. This relationship implies an inequality which 
describes the radial deformation of the fluid, and shows the non-existence of time-
periodic solutions with nonzero, finite energy.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

This study concerns the Euler equations of incompressible inviscid fluid dynamics. The Euler equations 
provide an accurate representation of a variety of inviscid fluid flows and are used in numerous practical 
situations. Mathematical interest in the Euler equations includes the open problems of classifying nonlinear 
blow-up, long-time behavior, and stability of solutions for various types of initial conditions. Conservation 
of energy plays an important role in controlling blow-up; for example, solutions of infinite energy have been 
shown to blow-up in a finite amount of time [9].

The goal of this study is to use variational symmetries of the Euler equations in Lagrangian coordinates 
to find conservation laws. Noether’s First Theorem [19] relates variational symmetries to conservation laws 
of a corresponding differential system. However, the Euler equations in Eulerian variables do not admit a 
variational formulation. Point symmetries of the Euler equations in Eulerian variables were obtained in [4]; 
see also [20]. There are many works on the conservation laws of the Euler equations; see [13] and references 
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therein; see also [1–3] for conservation laws in n-space computed using the direct method. Conservation 
laws were also obtained for the Euler equations in vorticity formulation [8]. On the other hand, the Euler 
equations in Lagrangian variables (see [17,10] for background) do admit a variational formulation. Caviglia 
and Morro [6] computed symmetries and conservation laws using a variational formulation for the com-
pressible Euler equations in Lagrangian coordinates. However, they later [7] computed conservation laws for 
the incompressible Euler equations without using symmetries or a variational formulation. We show that 
a simple modification to their compressible flow Lagrangian in [6] allows for a variational formulation of 
incompressible flow.

In this paper we study a variational formulation of the incompressible Euler equations in Lagrangian 
coordinates. We obtain a new scaling symmetry of the action functional. This scaling symmetry leads via 
Noether’s theorem to a new conservation law in n-space. The resulting conserved quantity relates the total 
energy integral, a quantity defined in Eulerian variables, to a new integral quantity defined exclusively in 
Lagrangian variables. This relationship allows for the quantification of the radial deformation of the fluid, 
and rules out the existence of time-periodic solutions with nonzero, finite energy.

2. Variational framework

We first introduce Lagrangian coordinates, discuss their physical interpretation, and detail explicitly 
the transformation of the Euler equations to Lagrangian coordinates from Eulerian variables. Then, we 
demonstrate the variational formulation behind the Euler equations in Lagrangian coordinates using a 
Lagrange multiplier (namely the pressure) of the incompressibility constraint.

2.1. Lagrangian coordinates

The continuity and Euler equations of incompressible ideal fluid dynamics are as follows [16]:

�∇x · �u = 0, (1)

(∂t + �u · �∇x)�u = −�∇xp, (2)

where �u = (u1, . . . , un) is the velocity vector, �∇x = (∂x1 , . . . , ∂xn) is the gradient, and p = p̄/ρ is the 
pressure p̄ divided by the constant density ρ; we henceforth refer to p as the pressure. The velocity vector �u
and pressure p are functions of (�x, t) = (x1, . . . , xn, t). The first condition (1) gives the local conservation of 
mass and specifies that the fluid be incompressible. The second states the momentum balance within a small 
parcel of fluid. The equations are considered on Rn × [0, ∞), where n ≥ 2 is 2 or 3 in most applications.

The equations for ideal incompressible fluid dynamics can be recast using the “Lagrangian map” �x(�a, t) =
(x1, . . . , xn) [15,5]. This smooth function gives the position �x of a particular fluid particle given by “label 
vector” �a = (a1, . . . , an) at time t. At the initial time t = 0, the positions of the fluid particles coincide 
with their “Lagrangian coordinates”: �x(�a, 0) = �a. As time progresses, the positions of the particles deviate 
from their initial positions by the action of the fluid velocity �u(�x, t). This relationship between position and 
velocity can be quantified by a kinematic system of equations: ∂t�x(�a, t) = �u(�x, t), where ∂t denotes partial 
differentiation with respect to variable t. For small times t → 0, Taylor’s theorem gives

�x(�a, t) ≈ �x(�a, 0) + t ∂t�x(�a, 0) + O(t2)

= �a + t �u(�x(�a, 0), 0) + O(t2)

= �a + t �u(�a, 0) + O(t2).

(3)

In this moving frame that follows the fluid particles, governing equations (1), (2) take the following form 
[17,10]:
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