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In this work we consider an optimal design problem for two-component fractured 
media for which a macroscopic strain is prescribed. Within the framework of 
structured deformations, we derive an integral representation for the relaxed energy 
functional. We start from an energy functional accounting for bulk and surface 
contributions coming from both constituents of the material; the relaxed energy 
densities, obtained via a blow-up method, are determined by a delicate interplay 
between the optimization of sharp interfaces and the diffusion of microcracks. This 
model has the far-reaching perspective to incorporate elements of plasticity in 
optimal design of composite media.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Starting with the pioneering papers by Kohn and Strang [19–21], much attention has been drawn to 
optimal design problems for mixtures of conductive materials. The variational formulation of these problems, 
particularly useful for finding configurations of minimal energy, entails some technical problems from the 
mathematical point of view, in particular the non-existence of solutions. In [3,18] this issue is addressed by 
introducing a perimeter penalization in the energy functional to be minimized, which has also the effect 
of discarding configurations where the two materials are finely mixed. For a related problem, leading to a 
similar energy functional in the context of brutal damage evolution, see [1] and [14].

In the spirit of [22,23] we want to study an optimal design problem which can incorporate elements of 
plasticity, in a way that it is suited to treat both composite materials (made of components with different 
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mechanical properties) and polycrystals (where the same material develops different types of slips and 
separations at the microscopic level). In order to do so, we extend the framework introduced in [3], by 
considering a material with two components each of which undergoes an independent (first-order) structured 
deformation, according to the theory developed by Del Piero and Owen [12]. The generalization of our model 
to account for materials with more than two components, or to polycrystals, is straightforward.

Structured deformations set the basis to address a large variety of problems in continuum mechanics 
where geometrical changes can be associated with both classical and non-classical deformations for which an 
analysis at macroscopic and microscopic level is required. For instance, in a solid with a crystalline defective 
structure, opening of cracks at the macroscopic level may compete with slips and lattice distortions at the 
microscopic level preventing the use of classical theories, where deformations are assumed to be smooth. The 
objective of the theory of structured deformations is to generalize the theoretical apparatus of continuum 
mechanics as a starting point for a unified description of bodies with microstructure. It also turns out to 
be relevant to describe phenomena as plasticity, damage, creation of voids, mixing, and fracture in terms of 
the underlying microstructure (see [12]).

We discuss now in more detail the application to polycrystals, which consist of a large number of grains, 
each having a different crystallographic orientation, and where the intrinsic elastic and plastic response of 
each portion may vary from point to point. The anisotropic nature of crystal slip usually entails reorien-
tation and subdivision phenomena during plastic straining of crystalline matter, even under homogeneous 
and gradient-free external loadings. This leads to spatial heterogeneity in terms of strain, stress, and crystal 
orientation. Beyond the aim of gaining fundamental insight into polycrystal plasticity, an improved under-
standing of grain-scale heterogeneity is important, and this is the main motivation for our work. As noted 
in [25], structural and functional devices are increasingly miniaturized. This involves size reduction down to 
the single crystal or crystal-cluster scale. In such parts, crystallinity becomes the dominant origin of desired 
or undesired anisotropy. In miniaturized devices plastic heterogeneity and strain localization can be sources 
of quality loss and failure. Thus, optimized design of small crystalline parts requires improved insight into 
crystal response and kinematics at the grain and subgrain scale under elastic, plastic, or thermal loadings. 
Moreover, the better understanding of the interaction between neighboring grains, namely the quantification 
of its elastoplastic interaction, is in itself relevant for the verification and improvement of existing polycrys-
tals homogenization models. These models are often considered to capture the heterogeneities on material 
response for polycrystals, see, e.g., [24]. In this spirit, this work can also be viewed as a first step towards 
the derivation of a homogenization result for a polycrystalline material in the context of plasticity.

To minimize our functional from a variational point of view, we rely on the energetics for structured 
deformations first studied by Choksi and Fonseca [9], where the problem is set in the space of special 
functions of bounded variation. Given an open bounded subset Ω ⊂ R

N , a structured deformation (in 
the context of [9]) is a pair (g, G) ∈ SBV (Ω; Rd)×L1(Ω; Rd×N ), where g is the microscopic deformation 
and G is the macroscopic deformation gradient. The energy associated with a structured deformation is 
then defined as the most effective way to build up the deformation using sequences un ∈ SBV (Ω; Rd) that 
approach (g, G) in the following sense: un → g in L1(Ω; Rd) and ∇un ⇀ G in Lp(Ω; Rd×N ), for p > 1 a given 
summability exponent. The convergences above imply that the singular parts Dsun converge, in the sense 
of distributions, to Dg −G. To have a better understanding of this phenomenon, consider the simpler case 
of a deformation g ∈ W 1,1(Ω; Rd), that is, without macroscopic cracks. Then, Dun = ∇unLN +Dsun with 
Dsun absolutely continuous with respect to the Hausdorff measure HN−1 and supported in S(un), the jump 
set of un. Since Dun ⇀ ∇g in the sense of distributions and ∇un ⇀ G, we conclude that Dsun ⇀ ∇g −G

in the sense of distributions.
This tells us that the difference between microscopic and macroscopic deformations is achieved through a 

limit of singular measures supported in sets S(un) such that HN−1(S(un)) → +∞. The tensor M := ∇g−G

is called the disarrangements tensor and embodies the fact that the difference between the microscopic and 
the macroscopic deformations in the bulk are achieved as a limit of singular measures.
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