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gebraic sequences of integers, which satisfy this property for
every prime p, and some cocycle sequences, which we show
satisfy this property for a fixed p. For such a sequence, we
construct a profinite automaton that projects modulo p® to

MSC: the automaton generating the projected sequence. In general,
37B10 the profinite automaton has infinitely many states. Addition-
11B85 ally, we consider the closure of the orbit, under the shift map,
(1);’:(1); of the p-adic integer sequence, defining a shift dynamical sys-

tem. We describe how this shift is a letter-to-letter coding of
a shift generated by a constant-length substitution defined on
an uncountable alphabet, and we establish some dynamical
properties of these shifts.
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1. Introduction

A substitution (or morphism) on an alphabet A is a map 6 : A — A*, extended to
AY by concatenation. A substitution is length-k (or k-uniform) if, for each a € A, the
length of 0(a) is k. The extensive literature on substitutions has traditionally focused
on the case where A is finite. Some exceptions include recent work, for example in [12]
and [14]. Substitutions on a countably infinite alphabet have been used to describe lexi-
cographically least sequences on N avoiding certain patterns [13,19], and they have been
used in the combinatorics literature to enumerate permutations avoiding patterns [25].

In this article we present a new construction for constant-length substitutions on
an uncountable alphabet. Our motivation comes from the following classical results.
Let (a(n))n>0 be an automatic sequence (see Definition 2.2). Cobham’s theorem (The-
orem 2.6) characterizes an automatic sequence as the coding, under a letter-to-letter
map, of a fixed point of a constant-length substitution. Christol’s theorem (Theorem 2.8)
characterizes p-automatic sequences for prime p; they are precisely the sequences whose
generating function is algebraic over a finite field of characteristic p. The following can
be viewed as a generalization of one direction of Christol’s characterization.

Theorem 1.1 (/6, Theorem 32/, [10, Theorem 3.1]). Let (a(n))n>0 be a sequence of p-adic

n

integers such that ), ~,a(n)z" is algebraic over Zy(x), and let oo > 0. Then (a(n) mod

PY) >0 is p-automatic.

Thus certain p-adic integer sequences (and, in particular, integer sequences) have the
property that they become p-automatic when reduced modulo p®, for every a > 0.
More generally, the diagonal of a multivariate rational power series is p-automatic when
reduced modulo p®, and one can explicitly compute an automaton for (a(n) mod p®), >0
for all but finitely many primes p [20, Theorem 2.1].

Fix a prime p, and let (a(n)),>0 be a sequence such that (a(n)mod p®),>o is
p-automatic for every a > 0. For each «, there is a finite automaton generating
(a(n) mod p*)p>0. In Lemma 3.1 we show that these automata can be chosen in a
compatible way; namely, their inverse limit exists. In this way we obtain a profinite
automaton (Definition 3.3) generating the sequence (a(n))n>o.

We can obtain other inverse limit objects from a p-adic integer sequence in a similar
way. In particular, Cobham’s theorem guarantees a length-p substitution 6, such that
(a(n) mod p™),>0 is a coding of a fixed point of 8. Each substitution 6, is a substitution
on a finite alphabet, but their inverse limit is a profinite substitution on an alphabet
that is, in general, uncountable (Theorem 4.2). This alphabet has a natural coding to
the set Z, of p-adic integers, and the sequence (a(n)),>0 is the coding of a fixed point
of the profinite substitution.

With this profinite substitution, we obtain a shift (Theorem 4.1), as in the classical
finite-alphabet case. This shift is the closure of the orbit, under the shift map, of a fixed
point (or coding of a fixed point) of the profinite substitution. One feature of profinite



Download English Version:

https://daneshyari.com/en/article/5775435

Download Persian Version:

https://daneshyari.com/article/5775435

Daneshyari.com


https://daneshyari.com/en/article/5775435
https://daneshyari.com/article/5775435
https://daneshyari.com

