Contents lists available at ScienceDirect

ELSEVIER

CrossMark

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Flag-transitive quasi-residual designs with sporadic socle*

Lang Tang, Shenglin Zhou*

School of Mathematics, South China University of Technology, Guangzhou 510640, PR China

ARTICLE INFO

Keywords: Design Flag-transitive Primitive Sporadic simple group

ABSTRACT

Let \mathcal{D} be a quasi-residual design with an automorphism group *G*. In this paper, we classify flag-transitive, block-primitive or point-primitive quasi-residual designs with sporadic socle. Furthermore, we show that if *G* is flag-transitive block-primitive with sporadic socle, then *G* is point-primitive.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

A 2- (v, k, λ) design $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ is an incidence structure consisting of a finite set \mathcal{P} of v points and a collection \mathcal{B} of some distinct k-subsets of \mathcal{P} , called blocks, such that each 2-subset of \mathcal{P} is contained in precisely λ blocks. We denote the number of blocks by b and the number of blocks containing a given point by r. The numbers v, b, r, k, λ are the parameters of \mathcal{D} . A design is called *symmetric* if b = v (or equivalently r = k), and *non-trivial* if 2 < k < v. A *residual design* of a symmetric design \mathcal{D} is obtained by removing a block B of \mathcal{B} and all points in B from the other blocks. From the definition we know that a $2-(v, k, \lambda)$ residual design satisfies $r = k + \lambda$. A $2-(v, k, \lambda)$ design is called a *quasi-residual design* if $r = k + \lambda$ (or equivalently b = v + r - 1).

A flag in \mathcal{D} is an incidence point-block pair. The set of all flags in \mathcal{D} is denoted by \mathcal{F} . For a point $x \in \mathcal{P}$, denote $\mathcal{P}(x)$ the set of all blocks which are incident with x. Let $G \leq Aut(\mathcal{D})$ be an automorphism group of a 2- (v, k, λ) design \mathcal{D} . Then G is called *point-transitive* (*block-transitive*, *flag-transitive*, respectively) on \mathcal{D} if G is transitive on $\mathcal{P}(\mathcal{B}, \mathcal{F}, \text{ respectively})$; G is called *point-primitive* (*block-primitive*, respectively) on \mathcal{D} if G is primitive on $\mathcal{P}(\mathcal{B}, \text{ respectively})$. A set of blocks is called *base blocks* with respect to an automorphism group G of design \mathcal{D} if it contains exactly one block from each G-orbit on the block set. In particular, any block is a base block of \mathcal{D} if G is a block-transitive automorphism group of \mathcal{D} .

In 2005, Tian and Zhou completely classified flag-transitive point-primitive symmetric designs with sporadic socle [12]; in 2016, Zhan and Zhou dealt with flag-transitive nonsymmetric designs with $(r, \lambda) = 1$ and sporadic socle [13]. In [8], Delandtsheer had given a conjecture: if $G \le Aut(\mathcal{D})$ acts block-primitively on a 2-(v, k, 1) design \mathcal{D} , then G is point-primitive. Although there are many facts supporting this conjecture [7,8,10,14], but it is still open.

In this paper, we give the classification of flag-transitive, block-primitive or point-primitive quasi-residual $2-(v, k, \lambda)$ designs with sporadic socle. Furthermore, as a corollary, for a flag-transitive, quasi-residual $2-(v, k, \lambda)$ design with sporadic socle, we show that if $G \le Aut(\mathcal{D})$ is block-primitive, then G is also point-primitive. In 2000, Camina and Spiezia proved that if G is a group acting block-transitively on a 2-(v, k, 1) design, then the socle of G is not a sporadic simple group [3]. In addition, if k = v - 1, then r = v - 1, which means that \mathcal{D} is not a quasi-residual design. Thus, we only consider that $\lambda > 1$ and 2 < k < v - 1.

* Corresponding author.

^{*} This work is supported by the National Natural Science Foundation of China (grant no. 11471123).

E-mail addresses: llangtang@126.com (L. Tang), slzhou@scut.edu.cn (S. Zhou).

Table 1		
Block-primitive	quasi-residual	designs.

CASE	G	G_B	(v,b,r,k,λ)	\mathcal{D}
1	M_{11}	S ₅	(12, 66, 55, 10, 45)	\mathcal{D}_1
2	M_{12}	M ₁₀ : 2	(12, 66, 55, 10, 45)	$\mathcal{D}_2, \mathcal{D}_3 \cong \mathcal{D}_1$
3	M_{22}	$2^4: A_6$	(22, 77, 56, 16, 40)	\mathcal{D}_4
4		$2^4: S_5$	(22, 231, 210, 20, 190)	D_5
5	M ₂₂ : 2	$2^4: S_6$	(22, 77, 56, 16, 40)	$\mathcal{D}_6\cong \mathcal{D}_4$
6		$2^5: S_5$	(22, 231, 210, 20, 190)	$\mathcal{D}_7\cong\mathcal{D}_5$
7	M_{23}	$L_3(4): 2_2$	(23, 253, 231, 21, 210)	\mathcal{D}_8
8	M_{24}	M ₂₂ : 2	(24, 276, 253, 22, 231)	\mathcal{D}_9

Table 2

Point-primitive quasi-residual designs.

CASE	G	G _x	(v, b, r, k, λ)	\mathcal{D}
1	M_{11}	M_{10}	(11, 55, 45, 9, 36)	\mathcal{D}_{10}
2		$L_2(11)$	(12, 22, 11, 6, 5)	$\mathcal{D}_{11} \cong \mathcal{D}_1$
3		$L_2(11)$	(12, 66, 55, 10, 45)	D_{12}
4	M_{12}	M_{11}	(12, 66, 55, 10, 45)	$\mathcal{D}_{13}\cong \mathcal{D}_{12}\cong \mathcal{D}_2$
5	M_{22}	$L_{3}(4)$	(22, 77, 56, 16, 40)	$\mathcal{D}_{14}\cong\mathcal{D}_4$
6		$L_{3}(4)$	(22, 231, 210, 20, 190)	$\mathcal{D}_{15}\cong\mathcal{D}_5$
7	M ₂₂ : 2	$L_3(4): 2_2$	(22, 77, 56, 16, 40)	$\mathcal{D}_{16}\cong \mathcal{D}_{14}\cong \mathcal{D}_{6}$
8		$L_3(4): 2_2$	(22, 231, 210, 20, 190)	$\mathcal{D}_{17}\cong \mathcal{D}_{15}\cong \mathcal{D}_7$
9	M_{23}	M ₂₂	(23, 253, 231, 21, 210)	$\mathcal{D}_{18}\cong \mathcal{D}_8$
10	M_{24}	M ₂₃	(24, 276, 253, 22, 231)	$\mathcal{D}_{19}\cong \mathcal{D}_9$

Theorem 1.1. Let \mathcal{D} be a non-trivial quasi-residual 2- (v, k, λ) design with a flag-transitive, block-primitive automorphism group *G* whose socle is a sporadic simple group. Then one of the following holds:

- (1) D is a unique 2-(12, 10, 45) design, $G = M_{11}$ or $G = M_{12}$;
- (2) \mathcal{D} is a 2-(22, 16, 40) or a 2-(22, 20, 190) design, $G = M_{22}$ or $G = M_{22}$: 2;
- (3) D is a unique 2-(23, 21, 210) design, $G = M_{23}$;
- (4) D is a unique 2-(24, 22, 231) design, $G = M_{24}$.

Remark 1. *G* and \mathcal{D} can be read from Table 1. There are five different designs up to isomorphism.

Theorem 1.2. Let \mathcal{D} be a non-trivial quasi-residual 2- (ν, k, λ) design with a flag-transitive, point-primitive automorphism group *G* whose socle is a sporadic simple group. Then one of the following holds:

- (1) \mathcal{D} is a unique 2-(11, 9, 36) or 2-(12, 6, 5) design, $G = M_{11}$;
- (2) \mathcal{D} is a unique 2-(12, 10, 45) design, $G = M_{11}$ or $G = M_{12}$;
- (3) D is a 2-(22, 16, 40) or a 2-(22, 20, 190) design, $G = M_{22}$ or $G = M_{22}$: 2;
- (4) D is a unique 2-(23, 21, 210) design, $G = M_{23}$;
- (5) D is a unique 2-(24, 22, 231) design, $G = M_{24}$.

Remark 2. *G* and \mathcal{D} can be read from Table 2. There are seven different designs up to isomorphism. All pairs (*G*, \mathcal{D}) in Theorem 1.1 also appear in Theorem 1.2, and all designs can be found in [4].

Theorem 1.3. Let \mathcal{D} be a non-trivial quasi-residual $2-(v, k, \lambda)$ design with a flag-transitive automorphism group *G* whose socle is a sporadic simple group. If *G* is block-primitive, then *G* is point-primitive.

2. Preliminaries

In this section, we state some preliminary results which will be needed in this paper.

Lemma 2.1 ([4]). Let D be a 2- (v, k, λ) design. Then the following holds:

- (1) $r(k-1) = \lambda(v-1);$
- (2) bk = vr;
- (3) $b \ge v$.

Lemma 2.2. Let $\mathcal{D} = (\mathcal{P}, \mathcal{B})$ be a non-trivial $2-(\nu, k, \lambda)$ design with an automorphism group $G, x \in \mathcal{P}, B \in \mathcal{B}$. Then G is flag-transitive if and only if G is point-transitive and G_x is transitive on $\mathcal{P}(x)$; or G is block-transitive and G_B is transitive on B.

Lemma 2.3. Let \mathcal{D} be a 2- (ν, k, λ) design admitting a flag-transitive automorphism group G. Then the following holds:

(1) $r|\lambda d$, where d is any non-trivial subdegree of G;

Download English Version:

https://daneshyari.com/en/article/5775455

Download Persian Version:

https://daneshyari.com/article/5775455

Daneshyari.com