Coulson-type integral formulas for the general energy of polynomials with real roots ${ }^{*}$

Lu Qiao, Shenggui Zhang*, Jing Li
Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P.R. China

A R T I C L E I N F O

MSC:

05C50
15A18

Keywords:

Graph energy
Coulson integral formula
General energy of polynomials

Abstract

The energy of a graph is defined as the sum of the absolute values of its eigenvalues. In 1940 Coulson obtained an important integral formula which makes it possible to calculate the energy of a graph without knowing its spectrum. Recently several Coulson-type integral formulas have been obtained for various energies and some other invariants of graphs based on eigenvalues. For a complex polynomial $\phi(z)=\sum_{k=0}^{n} a_{k} z^{n-k}=a_{0} \prod_{k=1}^{n}\left(z-z_{k}\right)$ of degree n and a real number α, the general energy of $\phi(z)$, denoted by $E_{\alpha}(\phi)$, is defined as $\sum_{z_{k} \neq 0}\left|z_{k}\right|^{\alpha}$ when there exists $k_{0} \in\{1,2, \ldots, n\}$ such that $z_{k_{0}} \neq 0$, and 0 when $z_{1}=\cdots=z_{n}=0$. In this paper we give Coulson-type integral formulas for the general energy of polynomials whose roots are all real numbers in the case that $\alpha \in \mathbb{Q}$. As a consequence of this result, we obtain an integral formula for the $2 l$-th spectral moment of a graph. Furthermore, we show that our formulas hold when α is an irrational number with $0<|\alpha|<2$ and do not hold with $|\alpha|>2$.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a graph of order n. The spectrum of G consists of the eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$ of the adjacency matrix $A(G)$ of G, which are called the eigenvalues of G. It is well known that $\lambda_{1}=\max \left\{\left|\lambda_{1}\right|, \ldots,\left|\lambda_{n}\right|\right\}$. The energy $E(G)$ of G is defined as the sum of the absolute values of the eigenvalues of G, which is an invariant related to total π-electron energy [16]. Many mathematicians and chemists have done lots of work in the theory of graph energy, and also have obtained many results on this invariant of graphs (see [8,11]). In 1940, Coulson [4] obtained an important integral formula which makes it possible to calculate the energy of a graph without knowing its spectrum. That is, for a graph G, its energy

$$
E(G)=\frac{1}{\pi} \int_{-\infty}^{+\infty}\left[n-\frac{\mathrm{i} x \phi_{A}^{\prime}(G, \mathrm{i} x)}{\phi_{A}(G, \mathrm{i} x)}\right] \mathrm{d} x
$$

where $\phi_{A}(G, x)$ is the characteristic polynomial of $A(G)$ (called the characteristic polynomial of G). This formula is said to be the Coulson integral formula, and has many applications in the theory of graph energy (see [2,3,8-11,17]).

The energy of graphs has many generalizations and extensions. Recently several Coulson-type integral formulas have been obtained for various energies and some other invariants of graphs based on eigenvalues (see [7,12-15]).

[^0]Let

$$
\phi(z)=\sum_{k=0}^{n} a_{k} z^{n-k}=a_{0} \prod_{k=1}^{n}\left(z-z_{k}\right)
$$

be a complex polynomial of degree n. In [12], the authors defined the following energy-like quantities of $\phi(z)$:

$$
\begin{align*}
& E_{+}(\phi):=2 \sum_{\operatorname{Re} z_{k}>0} z_{k} \tag{1}\\
& E_{c}(\phi):=\sum_{\operatorname{Re} z_{k}>0} z_{k}-\sum_{\operatorname{Re} z_{k}<0} z_{k} \tag{2}\\
& E_{r e}(\phi):=\operatorname{Re}\left(\sum_{\operatorname{Re} z_{k}>0} z_{k}-\sum_{\operatorname{Re} z_{k}<0} z_{k}\right)=\sum\left|\operatorname{Re} z_{k}\right| \tag{3}\\
& E_{a}(\phi):=\sum\left|z_{k}\right| . \tag{4}
\end{align*}
$$

Clearly, the graph energy coincides the right-hand side of each of Eqs. (1)-(4). The authors of [12] extended the Coulson integral formula to the case when the roots of a polynomial are not real and simple. Shao et al. [15] proved both the complex form and real form of the Coulson integral formulas for $E_{c}(\phi)$ (called the (complex) energy of $\phi(z)$) by new approaches.

In [13], Qiao et al. further extended the energy of graphs to polynomials as follows.
Definition 1 [13]. Let

$$
\phi(z)=\sum_{k=0}^{n} a_{k} z^{n-k}=a_{0} \prod_{k=1}^{n}\left(z-z_{k}\right)
$$

be a complex polynomial of degree n and α a real number. The general energy of $\phi(z)$, denoted by $E_{\alpha}(\phi)$, is defined as $\sum_{z_{k} \neq 0}\left|z_{k}\right|^{\alpha}$ when there exists $k_{0} \in\{1,2, \ldots, n\}$ such that $z_{k_{0}} \neq 0$, and 0 when $z_{1}=\cdots=z_{n}=0$.

In this paper, we obtain some Coulson-type integral formulas for the general energy of polynomials whose roots are all real numbers with $\alpha \in \mathbb{Q}$ in Section 3. Before that, in Section 2, we give some preliminaries we need from complex analysis. In Section 4, we present an integral formula for the $2 l$-th spectral moment of a graph. In Section 5, We further show that our formulas hold when α is an irrational number with $0<|\alpha|<2$ and do not hold with $|\alpha|>2$.

2. Preliminaries

We first introduce some basic concepts and results in complex analysis which will be used later. Let $w=\rho \mathrm{e}^{\mathrm{i} \theta}$, where $\rho \geq 0$ and $\theta \in[0,2 \pi)$. Then,

$$
\begin{equation*}
z^{q}-w=\left(z-\rho^{\frac{1}{q}} \mathrm{e}^{\mathrm{i} \frac{\theta}{q}}\right)\left(z-\rho^{\frac{1}{q}} \mathrm{e}^{\mathrm{i} \frac{\theta+2 \pi}{q}}\right) \cdots\left(z-\rho^{\frac{1}{q}} \mathrm{e}^{\mathrm{i} \frac{\theta+2(q-1) \pi}{q}}\right), \tag{5}
\end{equation*}
$$

where $q \in \mathbb{Z}^{+}$.
Let D be a bounded domain. The boundary of D is denoted by ∂D.
The following three results in complex analysis are well known (see [6]).
Lemma 1 (Cauchy's Theorem). Let D be a bounded domain with piecewise smooth boundary. If $f(z)$ is analytic on D, and extends smoothly to ∂D, then

$$
\int_{\partial D} f(z) \mathrm{d} z=0
$$

Lemma 2 (Cauchy Integral Formula). Let D be a bounded domain with piecewise smooth boundary. If $f(z)$ is analytic on D, and extends smoothly to the boundary of D, then

$$
f(z)=\frac{1}{2 \pi \mathrm{i}} \int_{\partial D} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta, z \in D
$$

Lemma 3. Suppose that Γ is a piecewise smooth curve. If $f(z)$ is a continuous function on Γ, then $\left|\int_{\Gamma} f(z) \mathrm{d} z\right| \leq \int_{\Gamma}|f(z)| \cdot|\mathrm{d} z|$. Further, if Γ has length L, and $|f(z)| \leq M$ on Γ, then

$$
\left|\int_{\Gamma} f(z) \mathrm{d} z\right| \leq M L
$$

We also need the following simple lemma. The proof is omitted here.

https://daneshyari.com/en/article/5775467

Download Persian Version:

https://daneshyari.com/article/5775467

Daneshyari.com

[^0]: ㅎ. Supported by NSFC (Nos. 11671320, 11601428 and 11571135).

 * Corresponding author.

 E-mail addresses: water6qiao@mail.nwpu.edu.cn (L. Qiao), sgzhang@nwpu.edu.cn (S. Zhang), jingli@nwpu.edu.cn (J. Li).

