
Applied Mathematics and Computation 317 (2018) 101–108 

Contents lists available at ScienceDirect 

Applied Mathematics and Computation 

journal homepage: www.elsevier.com/locate/amc 

Highly accurate calculation of the resonances in the Stark 

effect in hydrogen 

Francisco M. Fernández 

∗, Javier Garcia 

INIFTA (UNLP, CONICET), División Química Teórica, Blvd. 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata, Argentina 

a r t i c l e i n f o 

Keywords: 

Stark effect 

Resonances 

Complex rotation 

Riccati–Padé method 

Accurate eigenvalues 

Metastable states 

a b s t r a c t 

We obtained accurate resonances for the Stark effect in hydrogen by means of three in- 

dependent methods. Two of them are based on complex rotation of the coordinates and 

diagonalization of the Hamiltonian matrix (CRLM and CRCH). The other one is based on 

the Riccati equations for the logarithmic derivatives of factors of the wavefunction (RPM). 

The latter approach enabled us to obtain the most accurate results and extremely sharp 

resonances. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

The Stark effect in hydrogen is an old problem in atomic spectroscopy and one of the first triumphs of wave mechanics 

[1,2] (and references therein). The Schrödinger equation is separable in parabolic and squared parabolic coordinates which 

facilitates the application of most approximate methods [2] . 

In a recent paper Fernández-Menchero and Summers [3] obtained the complex eigenvalues and eigenfunctions of the 

Hamiltonian operator for the hydrogen atom in a uniform electric field. They resorted to the Lagrange-mesh basis set, pro- 

posed by Lin and Ho [4] for the treatment of the Yukawa potential in a uniform electric field, and the complex-rotation 

method [5] . They compared their results with those obtained by Lin and Ho [4] , Kolosov [6] , Rao and Li [7] and Ivanov 

[8] and overlooked the earlier impressive calculations of Benassi and Grecchi [9] and the accurate results obtained by Fer- 

nández [10] . Benassi and Grecchi resorted to complex scaling and a basis set of confluent hypergeometric functions that is 

suitable when the Schrödinger equation is written in squared parabolic coordinates. On the other hand, Fernández applied 

the straightforward Riccati–Padé method (RPM) that does not require the use of complex coordinates. 

The purpose of this paper is to calculate the Stark resonances as accurately as possible by means of the methods pro- 

posed by Fernández-Menchero and Summers [3] , Benassi and Grecchi [9] and Fernández [10] and compare the results with 

those obtained by the authors already mentioned and also by Damburg and Kolosov [11] . There is a vast literature on the 

hydrogen atom in a uniform electric field but we restrict present discussion to some of the available calculations that we 

deem are suitable for comparison. 

In Section 2 we outline the main ideas about separating the Schrödinger equation in parabolic and squared parabolic co- 

ordinates. In Sections 3 –5 we briefly introduce the methods of Fernández-Menchero and Summers [3] , Benassi and Grecchi 

[9] and Fernández [10] , respectively. In Section 6 we compare the results of various approaches and in Section 7 we 

summarize the main results and draw conclusions. 
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2. Stark effect in hydrogen 

The Schrödinger equation in atomic units is 

Hψ = Eψ 

H = −1 

2 

∇ 

2 − 1 

r 
+ F z, (1) 

where F is the intensity of the uniform electric field assumed to be directed along the z axis. 

This equation is separable in parabolic coordinates 

x = 

√ 

ξη cos φ, y = 

√ 

ξη sin φ, z = 

ξ − η

2 

ξ ≥ 0 , η ≥ 0 , 0 ≤ φ ≤ 2 π. (2) 

If we write 

ψ(x, y, z) = (ξη) −1 / 2 u (ξ ) v (η) e imφ, m = 0 , ±1 , ±2 , . . . , (3) 

then we obtain two equations of the form (
d 2 

dx 2 
+ 

1 − m 

2 

4 x 2 
+ 

E 

2 

− σ
F 

4 

x + 

A σ

x 

)
�(x ) = 0 , (4) 

where σ = ±1 and A + = A and A − = 1 − A are separation constants. When σ = 1 , x = ξ and �(ξ ) = u (ξ ) ; when σ = −1 , 

x = η and �(η) = v (η) . 

The Schrödinger equation (1) is also separable in squared parabolic coordinates 

x = μν cos φ, y = μν sin φ, z = 

μ2 − ν2 

2 

μ ≥ 0 , ν ≥ 0 , 0 ≤ φ ≤ 2 π. (5) 

If in this case we write 

ψ(x, y, z) = (μν) −1 / 2 u (μ) v (ν) e imφ, (6) 

then we obtain two equations of the form (
d 2 

dx 2 
+ 

1 − 4 m 

2 

4 x 2 
+ 2 Ex 2 − σ F x 4 + Z σ

)
�(x ) = 0 , (7) 

where, σ = ±1 and Z + = Z and Z − = 4 − Z are the separation constants. When σ = 1 , x = μ and �(μ) = u (μ) ; when σ = 

−1 , x = ν and �(ν) = v (ν) . 

The solutions to the equations in either set of coordinates are commonly labeled by the quantum numbers n 1 , n 2 = 

0 , 1 , 2 . . . and m = 0 , 1 , . . . , and the notation | n 1 , n 2 , m 〉 is suitable for referring to them. We will sometimes resort to the 

principal quantum number n = n 1 + n 2 + | m | + 1 to denote a set of states. Obviously, m is the only good quantum number; 

the other ones refer to the states of the hydrogen atom and are valid when F = 0 . 

3. Complex rotation and Laguerre-mesh basis set 

Fernández-Menchero and Summers [3] decided to treat the Schrödinger equation as nonseparable. The Hamiltonian op- 

erator in parabolic coordinates reads 

H = − 2 

ξ + η

[
∂ 

∂ξ

(
ξ

∂ 

∂ξ

)
+ 

∂ 

∂η

(
η

∂ 

∂η

)]
− 1 

2 ξη

∂ 2 

∂φ2 
− 2 

ξ + η
+ F 

ξ − η

2 

, (8) 

and the authors proposed the variational ansatz 

ψ ( ξ , η, φ) = 

1 √ 

2 π
e imφ

N ∑ 

k =1 

N ∑ 

l=1 

c klm 

e −
ξ+ η

2 ( ξη) 
| m | 
2 �Nk (ξ )�Nl (η) (9) 

�Nk (x ) = (−1) k 
√ 

x k 
L N (x ) 

x − x k 
, (10) 

where L N ( x ) is the Laguerre polynomial of degree N and x k its k th zero. In order to obtain the resonances they resorted to 

the well-known complex rotation method [5] that in this case is given by the transformation ( ξ , η) → ( e i ϑξ , e i ϑη), where ϑ
is the rotation angle. The eigenvalues and expansion coefficients are given by the secular equation 

(H − ES ) C = 0 , (11) 

where the elements of the N 

2 × N 

2 matrices H and S are explicitly shown elsewhere [3] and the elements of the column 

vector C are the coefficients c klm 

. Note that the integrals appearing in the matrix elements of both H and S should be 

calculated numerically and when we increase N we have to calculate all those integrals again. For brevity we will call this 

method CRLM. 
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