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This paper is devoted to giving a rigorous numerical analysis for a fractional differential 

equation with order α ∈ (0, 1). First the fractional differential equation is transformed into 

an equivalent Volterra integral equation of the second kind with a weakly singular ker- 

nel. Based on the a priori information about the exact solution, an integral discretization 

scheme on an a priori chosen adapted mesh is proposed. By applying the truncation error 

estimate techniques and a discrete analogue of Gronwall’s inequality, it is proved that the 

numerical method is first-order convergent in the discrete maximum norm. Numerical re- 

sults indicate that this method is more accurate and robust than finite difference methods 

when α is close to 0. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Fractional calculus has played a significant role in a variety of scientific and engineering fields, such as finance [12,18] , 

control [11] , viscoelasticity [6] , and hydrology [1,13] . Those fractional models, described in the form of fractional differential 

equations, have been proved to be more appropriate for modeling many physical phenomena than the traditional integer 

order models, because fractional calculus enables the description of the memory properties of various materials and pro- 

cesses [ 17 , Chapter 10]. The analytical solutions of most fractional differential equations can not be obtained, so approximate 

and numerical techniques must be used. 

In this paper, we consider the following fractional differential equation 

D 

α
∗ u (x ) + f ( x, u ) = 0 , x ∈ � := (0 , 1] , (1.1) 

u (0) = γ , (1.2) 

where D 

α∗ denotes the Caputo fractional derivative defined by 

D 

α
∗ u (x ) = 

1 

�(1 − α) 

∫ x 

0 
( x − t ) 

−αu 

′ ( t )d t , 0 < α < 1 , (1.3) 

the constant γ and function f are given. We assume that function f satisfies 

f (x, u ) ∈ C 
(
�̄ × R 

)
∩ C 1 ( � × R ) . (1.4) 
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Under this hypothesis, the fractional differential equation (1.1) and (1.2) exists a unique solution u (x ) ∈ C( ̄�) (see e.g., [3, 

Theorem 6.8] ). In [ 3 , Theorem 6.28] it is shown that if f (x, u ) ∈ C 
(
�̄ × R 

)
∩ C q ( � × R ) for some integer q ≥ 1 there exists a 

positive constant C 0 such that ∣∣u 

( j) (x ) 
∣∣ ≤

{
C 0 , if j = 0 , 

C 0 x 
α− j , if j = 1 , 2 , . . . , q + 1 , 

(1.5) 

for all x ∈ �. These bounds indicate that the derivatives of the solution u may blow up at the end point x = 0 . This singular 

behavior complicates the construction of the discretization scheme and the convergence analysis of the numerical method. 

Since analytic solutions for fractional differential equations are generally impossible to attain, various numerical meth- 

ods for solving the fractional differential equations have been proposed. There are some papers which take account of the 

possibly singular behavior of solutions of the fractional differential equations. Numerical schemes based on the collocation 

methods are developed in [4,7–10,14–16] , finite difference schemes are proposed in [2,5,19,20] . Because of the presence of 

the singular behavior, standard numerical methods fail to give accurate approximation, even for high-order methods. 

In this paper we first transform the fractional order initial value problem (1.1) and (1.2) into an equivalent Volterra 

integral equation of the second kind with a weakly singular kernel. Then we discretize the Volterra integral equation on 

an apriori chosen adapted mesh. A rigorous analysis about the convergence of the discretization scheme is given by taking 

account of the possibly singular behavior of the solution. Applying the truncation error estimate techniques and a discrete 

analogue of Gronwall’s inequality [21] , we will prove that the scheme is first-order convergent in the discrete maximum 

norm. Numerical results are given to display that this method is more accurate and robust than finite difference methods 

when α is close to 0. 

The rest of the paper is organized as follows. The discretization scheme is described in Section 2 . Convergence analysis 

of the scheme is given in Section 3 . Finally, numerical experiments are presented in Section 4 . 

Notation. Throughout the paper, C will denote a generic positive constant that is independent of the mesh. Note that C 

is not necessarily the same at each occurrence. To simplify the notation we set g i = g(x i ) for any function g ∈ C( ̄�) . 

2. Discretization scheme 

Based on the properties of the exact solution u ( x ) we construct an apriori mesh �N ≡ { 0 = x 0 < x 1 < · · · < x N = 1 } with 

the mesh points 

x i = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

(
i 

N 

)r 

, 0 ≤ i ≤ N 

2 

, 

1 

2 

r 
+ 

2 

(
1 − 1 

2 r 

)
N 

(i − N 

2 

) , 
N 

2 

< i ≤ N, 

(2.1) 

where the discretization parameter N is a positive even integer, r = 

1 
α > 1 . The mesh points (2.1) are more densely at the 

region near x = 0 since the exact solution of the fractional differential equations (1.1) and (1.2) may be singular near x = 0 ; 

away from x = 0 a uniform mesh is used. Pedas et al. [7,14–16] used the mesh x i = 

(
i 
N 

)r 
for 0 ≤ i ≤ N , which may be coarse 

when i close to N . Our mesh is a slight modification of that in [7,14–16] . 

It is well known that the initial value problem (1.1) and (1.2) can be written as the following equivalent Volterra integral 

equation of the second kind with a weakly singular kernel [ 3 , Lemma 6.2] 

u (x ) = u (0) − 1 

�(α) 

∫ x 

0 
( x − t ) 

α−1 f ( t , u (t ) ) d t, (2.2) 

u (0) = γ . (2.3) 

In the following we will discrete this integral equation instead of the differential equations (1.1) and (1.2) . 

An approximation to the integral can be obtained by a quadrature formula ∫ x i 

0 
( x i − t ) 

α−1 f ( t , u (t ) ) d t = 

i ∑ 

k =1 

∫ x k 

x k −1 

( x i − t ) 
α−1 f ( t , u (t ) ) d t 

≈
i ∑ 

k =1 

f ( x k , u k ) 

∫ x k 

x k −1 

( x i − t ) 
α−1 d t 

= 

1 

α

i ∑ 

k =1 

f ( x k , u k ) 
[
( x i − x k −1 ) 

α − ( x i − x k ) 
α
]
. 

Then, we have the following discretization scheme for the problem (2.2) and (2.3) : 

u 

N 
i = u 

N 
0 −

1 

�(α + 1) 

i ∑ 

k =1 

f 
(
x k , u 

N 
k 

)[
( x i − x k −1 ) 

α − ( x i − x k ) 
α
]
, 1 ≤ i ≤ N, (2.4) 

u 

N 
0 = γ . (2.5) 
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