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a b s t r a c t 

The computation of matrix trigonometric functions has received remarkable attention in 

the last decades due to its usefulness in the solution of systems of second order linear 

differential equations. Several state-of-the-art algorithms have been provided recently for 

computing these matrix functions. In this work, we present two efficient algorithms based 

on Taylor series with forward and backward error analysis for computing the matrix co- 

sine. A MATLAB implementation of the algorithms is compared to state-of-the-art algo- 

rithms, with excellent performance in both accuracy and cost. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Many engineering processes are described by second order differential equations, whose solution is given in terms of the 

trigonometric matrix functions sine and cosine. Examples arise in the spatial semi-discretization of the wave equation or in 

mechanical systems without damping, where their solutions can be expressed in terms of integrals involving the matrix sine 

and cosine [1,2] . Several state-of-the-art algorithms have been provided recently for computing these matrix functions using 

polynomial and rational approximations with scaling and recovering techniques [3–6] . In order to reduce computational 

costs Paterson–Stockmeyer method [7] is used to evaluate the matrix polynomials arising in these approximations. 

In the Taylor algorithm proposed in [4] we used sharp absolute forward error bounds. In the Taylor algorithm proposed 

in [6] we improved the previous algorithm using relative error bounds based on backward error bounds of the matrix expo- 

nentials involved in cos ( A ). Those error bounds do not guarantee that the cosine backward error bound in exact arithmetic 

is less than the unit roundoff in double precision arithmetic [6, Section 2] . However, according to the tests, that algorithm 

improved the accuracy with respect to the previous Taylor algorithm at the expense of some increase in cost (measured in 

flops). The algorithm proposed in [6] was also superior in both accuracy and cost to the version of the scaling and recovering 

Padé state-of-the-art algorithm in [5] not using the Schur decomposition. 

Other algorithms based on approximations on L ∞ 

for normal and nonnegative matrices have been presented recently 

in [8] . In this work, we focus on general matrices and algorithms using approximations at the origin. We present two 
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algorithms based on Taylor series that use Theorem 1 from [4] for computing the matrix cosine. We provide relative forward 

and backward error analysis for the matrix cosine Taylor approximation that improves even more the comparison to the 

algorithm in [5] with and without Schur decomposition in both accuracy and cost tests. 

Throughout this paper C 

n ×n denotes the set of complex matrices of size n × n , I the identity matrix for this set, ρ( X ) 

the spectral radius of matrix X , and N the set of positive integers. In this work, we use the 1-norm to compute the actual 

norms. This paper is organized as follows. Section 2 presents a Taylor algorithm for computing the matrix cosine function. 

Section 3 deals with numerical tests and, finally, Section 4 gives some conclusions. 

2. Algorithms for computing matrix cosine 

The matrix cosine can be defined for all A ∈ C 

n ×n by 

cos (A ) = 

∞ ∑ 

i =0 

(−1) 
i 
A 

2 i 

(2 i )! 
, 

and let 

T 2 m 

(A ) = 

m ∑ 

i =0 

(−1) 
i 
B 

i 

(2 i )! 
≡ P m 

(B ) , (1) 

be the Taylor approximation of order 2 m of cos ( A ), where B = A 

2 . Since Taylor series are accurate only near the origin, 

in algorithms that use this approximation the norm of matrix B is reduced by scaling the matrix. Then, a Taylor ap- 

proximation is computed, and finally the approximation of cos ( A ) is recovered by means of the double angle formula 

cos (2 X ) = 2 cos 2 (X ) − I. Algorithm 1 shows a general algorithm for computing the matrix cosine based on Taylor approxi- 

mation. By using the fact that sin (A ) = cos (A − π
2 I) , Algorithm 1 also can be easily used to compute the matrix sine. 

Algorithm 1 Given a matrix A ∈ C 

n ×n , this algorithm computes C = cos (A ) by Taylor series. 

1: Select adequate values of m and s � Phase I 

2: B = 4 −s A 

2 

3: C = P m 

(B ) � Phase II: Compute Taylor approximation 

4: for i = 1 : s do � Phase III: Recovering cos (A ) 

5: C = 2 C 2 − I 

6: end for 

In Phase I of Algorithm 1 , m and s must be calculated so that the Taylor approximation of the scaled matrix is computed 

accurately and efficiently. In this phase some powers B i , i ≥ 2, are usually computed for estimating m and s and if so they 

are used in Phase II. 

Phase II consists of computing the Taylor approximation (1) . For clarity of the exposition we recall some results sum- 

marized in [6, Section 2] . Taylor matrix polynomial approximation (1) , expressed as P m 

(B ) = 

∑ m 

i =0 p i B 
i , B ∈ C 

n ×n , can be 

computed with optimal cost by the Paterson–Stockmeyer’s method [7] choosing m from the set 

M = { 1 , 2 , 4 , 6 , 9 , 12 , 16 , 20 , 25 , 30 , 36 , 42 , . . . } , 
where the elements of M are denoted as m 1 , m 2 , m 3 , . . . The algorithm computes first the powers B i , 2 ≤ i ≤ q not computed 

in the previous phase, being q = � √ 

m k 
 or q = � √ 

m k � an integer divisor of m k , k ≥ 1, both values giving the same cost in 

terms of matrix products. Therefore, (1) can be computed efficiently as 

P m k 
(B ) = (2) 

(((p m k 
B 

q + p m k −1 B 

q −1 + p m k −2 B 

q −2 + · · · + p m k −q +1 B + p m k −q I) B 

q 

+ p m k −q −1 B 

q −1 + p m k −q −2 B 

q −2 + · · · + p m k −2 q +1 B + p m k −2 q I) B 

q 

+ p m k −2 q −1 B 

q −1 + p m k −2 q −2 B 

q −2 + · · · + p m k −3 q +1 B + p m k −3 q I) B 

q 

· · ·
+ p q −1 B 

q −1 + p q −2 B 

q −2 + · · · + p 1 B + p 0 I. 

Table 1 (page 11) shows the values of q for different values of m . From Table 4.1 from [9, p. 74] the cost of computing 

(1) with (2) is �m k 
= k matrix products, k = 1 , 2 , . . . 

Finally, Phase III is necessary to obtain the cosine of matrix A from cos (4 −s B ) computed previously in Phase II. If m k 

is the order used and s is the scaling parameter, then the computational cost of Algorithm 1 is 2(k + s ) n 3 flops, and the 

storage cost is (2 + q k ) n 
2 . 

The difficulty of Algorithm 1 is to find appropriate values of m k and s such that cos ( A ) is computed accurately with 

minimum cost. For that, in the following sections we will use Theorem 1 : 
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