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a b s t r a c t

An improved algorithm for the estimation of physical parameters with sub-sampled and
delayed data is here presented. It shows a much better accuracy than the state-of-the-art
when the sampling time of data acquisition Ts is much higher than the discretization step
Tsc that should be used to get a highly accurate discrete model, i.e. Ts ≫ Tsc , which is
a common situation in multi-body and finite-element modelling applications. Moreover,
the method proposed is capable of compensating delays between different acquisition
channels. For the numerical experiments we focus on a mainstream class of models in
applied mechanics, i.e. linear elasto-dynamics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

There are, nowadays, a certain number of mechanical and mechatronic applications that require to estimate some
physical parameter from the data collected in controlled experiments on a physical system. This is done traditionally off-line,
with computer processing of these data. With current electronic devices these estimates may be conducted also in real-time
on devices that act e.g. as embedded controllers of the system, and use these estimates for functional purposes; in this case
these estimates are called indirect measurements, or soft-sensors and aim at the identification of a continuous-time model
from experimental data [1,2].

The improved computer method here presented refers to the estimation through data collected in temporal transients;
the data are collected in the time domain and also analysed in the same domain, using models that describe the temporal
response dynamics of the system under test. In the literature there are also well-known techniques based on experiments
with stationary signals, that involve vibration analysis (see e.g. [3] and contained citations), and estimate frequency
responses of the system under test, through the analysis in the frequency domain of the experimental data.

First of all we will present a method that can estimate the physical parameters of a linear elasto-dynamic model using
data sampled with a period Ts not too small and Ts ≫ Tsc , where Tsc is the time-discretization step used to discretize the
continuous model. This is a practical advantage and can be obtained simply by sampling with two different periods quite
close each other, see Section 3; this is possible with the majority of the existing, even low end, electronic devices.

Moreover, we present a second improvement that allows to compensate unmodelled time-shifts between the collected
signals. We will show that good results can be obtained by modifying the discretization algorithm from the best-practices
used in the numerical simulation. For example, with the well-known θ-method [4], the choice of the parameter θ can be
relevant and in realistic conditions (acquisition periods not very fast and I/O signals not perfectly synchronized) often it is
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better to choose its value different from the standard choices 0, 1 or 1/2 (Crank–Nicholson, also known as Tustin method or
bilinear transform). In particular, this is the case when:

• The acquired signals are not perfectly synchronized, as is common in practice. In case of fast dynamics, even small
time-shifts can alter significantly the estimated values. The method here proposed compensates for these shifts with
a proper choice of θ , see Section 4.

• There is an unmodelled, small delay in the system response. For example, a transmission modelled as infinitely rigid
but not so in practice, the delay introduced by some electronic device like DAC and ADC, omnipresent in acquisition
systems and in actuators (mechanics is today more and more moved by electronic controllers and drivers), etc.

Note that the delay could be explicitly modelled in the system, at the price of a considerable extra-effort in themodelling
phase and a complication in the numerical methods involved to discretize the continuous system. Such an approach [5]
makes sense when the delay is reasonably big and it modifies substantially the response of a non-delayed system.

The paper is organized as follows. In Section 2 we describe the model problem and a common approach in parameter
estimation. In Section 3we present an improved linear estimation of physical parameters in case of Ts ≫ Tsc and in Section 4
an improved linear estimation of physical parameters in presence of delays. Section 5 contains some numerical experiments
around the method proposed.

2. Problem statement and solution outline

Let us consider a generic linear elasto-dynamic model, represented by the following system of ordinary differential
equations:

Md̈(t) + Gḋ(t) + Kd(t) = g(t), (1)

where the matrices M , G, and K describe, respectively, the mass, damping and stiffness properties of the physical system,
and g(t) represents the forcing term (external forces). This model, although simple, is widely used in both continuum
mechanics [6] and multibody modelling [7] and allows us to explain analytically the results obtained by the parameter
estimation method here proposed.

Computer methods for this kind of model commonly are numerical integrations applied directly to model (1) or to its
first-order-in-time reformulation. We choose this second form since, in this way, we translate the model (1) in the standard
form used in system identification [1,8], that we will use for the estimation of the physical model parameters [3,9].

Therefore, let us reformulate themodel (1) as a systemof first-order, ordinary differential equations and add linear output
relations:

ẋ(t) = Acx(t) + Bcu(t)
y(t) = Ccx(t)

, x(t) =

[
ḋ(t)
d(t)

]
, u(t) =

[
g(t)
0

]
, (2)

where x(t) is the state vector, u(t) the input vector, y(t) the output vector and:

Ac =

[
−M−1G −M−1K

I 0

]
, Bc =

[
M−1

0

]
, Cc invertible, (3)

are the resulting model matrices. Note that the experimental measurements are expressed as linear combinations of the
displacements d(t) and the velocities ḋ(t), defined by the matrix Cc . In the further text we denote f (x(t), u(t)) = Acx(t) +

Bcu(t).

2.1. Model problem

Let us choose as a model problem a system with three masses connected by springs and dampers, as shown in the figure
on the left of Table 1, that brings to the following system of equilibrium equations:⎧⎪⎪⎪⎨⎪⎪⎪⎩

M1ẍ1(t) = C1 (ẋ2(t) − ẋ1(t)) + K1
(
x2(t) − x1(t) + δxg

)
+ f ,

M2ẍ2(t) = C2 (ẋ3(t) − ẋ2(t)) + C1 (ẋ1(t) − ẋ2(t))
+ K2 (x3(t) − x2(t) + δxb) + K1

(
x1(t) − x2(t) − δxg

)
,

M3ẍ3(t) = C3 (−ẋ3(t)) + C2 (ẋ2(t) − ẋ3(t))
+ K3 (−x3(t) + δxs) + K2 (x2(t) − x3(t) − δxb) .

In this way we avoid the problem of the model order selection, that would intervene with a systemwith a lot of degrees-
of-freedom or with a continuous system (therefore discretized in space e.g. with the FEM [6]). For a reference on the subject
see e.g. [2,10]. Realistic conditions, e.g. dictated by an application in railway engineering, demand for sampling periods
Tsc = 0.00001 and Ts = 0.001 and nominal values of the physical parameters as shown in Table 1, that we will take as
reference values in our numerical experiments.

Note that this system represents a wide class of models. Indeed, it may be immediately generalized to n masses or the
continuum, discretized in space with finite elements [6] or finite differences. The structure of the model would be identical
and so the physical meaning of parameters, despite their different number.
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