Existence of positive solutions for the nonlinear elastic beam equation via a mixed monotone operator

I.J. Cabrera *, B. López, K. Sadarangani
Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, Spain

ARTICLE INFO

Article history:

Received 17 February 2017

Keywords:

Elastic beam equation
Positive solution
Mixed monotone operator

Abstract

In this paper, we use a mixed monotone operator method to investigate the existence and uniqueness of positive solution to a nonlinear fourth-order boundary value problem which describes the deflection of an elastic beam with the left extreme fixed and the right extreme is attached to a bearing device given by a known function. Moreover, we present a concrete example illustrating the result obtained.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

Fourth-order two-point boundary value problems have been studied by different authors because they describe the deflection of an elastic beam (see [1-12] and the references therein, for example).

The main tool in our study is a mixed monotone operator method. This technique was used by the authors in [12] in the study of the following nonlinear boundary value problem

$$
\left\{\begin{array}{l}
u^{(4)}(t)=\lambda f(t, u(t)), \quad t \in(0,1) \tag{1}\\
u(0)=0, \quad u^{\prime}(0)=\mu h(u(0)) \\
u^{\prime \prime}(1)=0, \\
u^{\prime \prime \prime}(1)=\mu g(u(1))
\end{array}\right.
$$

where $\lambda>0, \mu \geq 0$ and f, g, h are functions given.
In [10], the authors study the existence and uniqueness of positive solutions for the nonlinear boundary value problem

$$
\left\{\begin{array}{l}
u^{(4)}(t)=f(t, u(t)), \quad t \in(0,1) \tag{2}\\
u(0)=u^{\prime}(0)=u^{\prime \prime}(1)=0 \\
u^{\prime \prime \prime}(1)=g(u(1))
\end{array}\right.
$$

where f, g are functions given, by using a mixed monotone operator method.
Using the same technique in [11] the authors study the existence and uniqueness of positive solutions for the boundary value problem

$$
\left\{\begin{array}{l}
u^{(4)}(t)=f\left(t, u(t), u^{\prime}(t)\right), \quad t \in(0,1) \tag{3}\\
u(0)=u^{\prime}(0)=u^{\prime \prime}(1)=0 \\
u^{\prime \prime \prime}(1)=g(u(1))
\end{array}\right.
$$

where f, g are functions given.

[^0]Motivated by the above mentioned papers, by using a mixed monotone operator method, we study the existence and uniqueness of positive solutions for the following boundary value problem.

$$
\left\{\begin{array}{l}
u^{(4)}(t)=f(t, u(t),(H u)(t)), \quad t \in[0,1], \tag{4}\\
u(0)=u^{\prime}(0)=u^{\prime \prime}(1)=0, \\
u^{\prime \prime \prime}(1)=g(u(1)),
\end{array}\right.
$$

where $f:[0,1] \times[0, \infty) \times[0, \infty) \rightarrow[0, \infty), g:[0, \infty) \rightarrow(-\infty, 0]$ are continuous functions and H is an operator (not necessarily linear) applying $C[0,1]$ into itself and satisfying certain assumptions.

Next, we present some definitions, notations and results which will be used in the proof of our main result.
Suppose that $(E,\|\cdot\|)$ is a real Banach space. A nonempty closed convex set $P \subset E$ is said to be a cone if it satisfies:

1. $x \in P$ and $\lambda \geq 0 \Rightarrow \lambda x \in P$.
2. $-x, x \in P \Rightarrow x=\theta_{E}$,
where θ_{E} denotes the zero element of E.
Suppose that P is a cone in the Banach space $(E,\|\cdot\|)$. Then P induces a partial order in E given by,

$$
x, y \in E, \quad x \leq y \Leftrightarrow y-x \in P
$$

By $x<y$, we denote $x \leq y$ and $x \neq y$.
If interior of $P, \stackrel{P}{P}$, is nonempty, we say that the cone P is solid.
If there exists a constant $C>0$ such that, for any $x, y \in E$ with $\theta_{E} \leq x \leq y$ implies $\|x\| \leq C\|y\|$ then the cone P is said to be normal. In this case, the smallest constant C satisfying the last inequality is called the normality constant of P.

For $x, y \in E$, we denote $x \sim y$ when there exist constants $\lambda, \mu>0$ such that

$$
\lambda y \leq x \leq \mu y
$$

Clearly \sim is an equivalence relation.
For $\theta_{E}<h$, we denote by P_{h} the set

$$
P_{h}=\{x \in E: x \sim h\} .
$$

It is easily seen that $P_{h} \subset P$.
Definition 1. An operator $T: E \longrightarrow E$ is said to be increasing (resp. decreasing) if, for any $x, y \in E, x \leq y$ implies $T x \leq T y$ (resp. $T x \geq T y$).

Definition 2. An operator $A: P \times P \longrightarrow P$ is called mixed monotone if $A(x, y)$ is increasing in x and decreasing in y, i.e., for any $(x, y),(u, v) \in P \times P$,

$$
x \leq u \quad \text { and } \quad y \geq v \Rightarrow A(x, y) \leq A(u, v)
$$

Definition 3. An operator $B: P \longrightarrow P$ is called subhomogeneous if

$$
B(t x) \geq t B x, \quad \text { for any } t \in(0,1) \text { and } x \in P .
$$

The following result appears in [13] and it gives us the mixed monotone operator method which we will use in the proof of our main result.

Theorem 1. Suppose that $\alpha \in(0,1), h \in E$ with $\theta_{E}<h$, and P is a normal cone in the Banach space $(E,\|\cdot\|)$. Let $A: P \times P \longrightarrow P$ be a mixed monotone operator such that

$$
A\left(t x, t^{-1} y\right) \geq t^{\alpha} A(x, y), \quad \text { for any } t \in(0,1) \text { and } x, y \in P
$$

Let $B: P \longrightarrow P$ be an increasing subhomogeneous operator.
Assume that
(i) there exists $h_{0} \in P_{h}$ such that $A\left(h_{0}, h_{0}\right) \in P_{h}$ and $B h_{0} \in P_{h}$,
(ii) there exists a constant $\delta_{0}>0$ such that

$$
A(x, y) \geq \delta_{0} B x, \quad \text { for any } x, y \in P
$$

then
(a) A: $P_{h} \times P_{h} \longrightarrow P_{h}$ and $B: P_{h} \longrightarrow P_{h}$,
(b) there exist $u_{0}, v_{0} \in P_{h}$ and $r \in(0,1)$ such that $r v_{0} \leq u_{0} \leq v_{0}$ and

$$
u_{0} \leq A\left(u_{0}, v_{0}\right)+B u_{0} \leq A\left(v_{0}, u_{0}\right)+B v_{0} \leq v_{0},
$$

https://daneshyari.com/en/article/5776179

Download Persian Version:

https://daneshyari.com/article/5776179

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: icabrera@dma.ulpgc.es (I.J. Cabrera), blopez@dma.ulpgc.es (B. López), ksadaran@dma.ulpgc.es (K. Sadarangani).

