

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

Existence of positive solutions for the nonlinear elastic beam equation via a mixed monotone operator

CrossMark

I.J. Cabrera *, B. López, K. Sadarangani

Departamento de Matemáticas, Universidad de Las Palmas de Gran Canaria, Campus de Tafira Baja, 35017 Las Palmas de Gran Canaria, Spain

ARTICLE INFO)
--------------	---

Article history: Received 17 February 2017

Keywords: Elastic beam equation Positive solution Mixed monotone operator

ABSTRACT

In this paper, we use a mixed monotone operator method to investigate the existence and uniqueness of positive solution to a nonlinear fourth-order boundary value problem which describes the deflection of an elastic beam with the left extreme fixed and the right extreme is attached to a bearing device given by a known function. Moreover, we present a concrete example illustrating the result obtained.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

Fourth-order two-point boundary value problems have been studied by different authors because they describe the deflection of an elastic beam (see [1-12] and the references therein, for example).

The main tool in our study is a mixed monotone operator method. This technique was used by the authors in [12] in the study of the following nonlinear boundary value problem

	$u^{(4)}(t) = \lambda f(t, u(t)), t \in (0, 1),$	
1	$\begin{cases} u(0) = 0, & u'(0) = \mu h(u(0)), \\ u''(1) = 0, & u'''(1) = \mu g(u(1)), \end{cases}$	(1)
	$u''(1) = 0, \qquad u'''(1) = \mu g(u(1)),$	

where $\lambda > 0$, $\mu \ge 0$ and f, g, h are functions given.

In [10], the authors study the existence and uniqueness of positive solutions for the nonlinear boundary value problem

$$\begin{aligned}
u^{(4)}(t) &= f(t, u(t)), \quad t \in (0, 1), \\
u(0) &= u'(0) = u''(1) = 0, \\
u'''(1) &= g(u(1)),
\end{aligned}$$
(2)

where f, g are functions given, by using a mixed monotone operator method.

Using the same technique in [11] the authors study the existence and uniqueness of positive solutions for the boundary value problem

$$u^{(4)}(t) = f(t, u(t), u'(t)), \quad t \in (0, 1), u(0) = u'(0) = u''(1) = 0, u'''(1) = g(u(1)),$$
(3)

where f, g are functions given.

E-mail addresses: icabrera@dma.ulpgc.es (I.J. Cabrera), blopez@dma.ulpgc.es (B. López), ksadaran@dma.ulpgc.es (K. Sadarangani).

http://dx.doi.org/10.1016/j.cam.2017.04.031 0377-0427/© 2017 Elsevier B.V. All rights reserved.

^{*} Corresponding author.

Motivated by the above mentioned papers, by using a mixed monotone operator method, we study the existence and uniqueness of positive solutions for the following boundary value problem.

$$\begin{cases} u^{(4)}(t) = f(t, u(t), (Hu)(t)), & t \in [0, 1], \\ u(0) = u'(0) = u''(1) = 0, \\ u'''(1) = g(u(1)), \end{cases}$$
(4)

where $f : [0, 1] \times [0, \infty) \times [0, \infty) \rightarrow [0, \infty)$, $g : [0, \infty) \rightarrow (-\infty, 0]$ are continuous functions and H is an operator (not necessarily linear) applying C[0, 1] into itself and satisfying certain assumptions.

Next, we present some definitions, notations and results which will be used in the proof of our main result.

Suppose that $(E, \|\cdot\|)$ is a real Banach space. A nonempty closed convex set $P \subset E$ is said to be a cone if it satisfies:

1. $x \in P$ and $\lambda \ge 0 \Rightarrow \lambda x \in P$. 2. $-x, x \in P \Rightarrow x = \theta_E$,

where θ_E denotes the zero element of *E*.

Suppose that *P* is a cone in the Banach space $(E, \|\cdot\|)$. Then *P* induces a partial order in *E* given by,

 $x, y \in E, \quad x \leq y \Leftrightarrow y - x \in P.$

By x < y, we denote $x \le y$ and $x \ne y$.

If interior of P, $\overset{\circ}{P}$, is nonempty, we say that the cone P is solid.

If there exists a constant C > 0 such that, for any $x, y \in E$ with $\theta_E \le x \le y$ implies $||x|| \le C ||y||$ then the cone P is said to be normal. In this case, the smallest constant C satisfying the last inequality is called the normality constant of P.

For $x, y \in E$, we denote $x \sim y$ when there exist constants $\lambda, \mu > 0$ such that

 $\lambda y \leq x \leq \mu y.$

Clearly \sim is an equivalence relation.

For $\theta_E < h$, we denote by P_h the set

 $P_h = \{x \in E : x \sim h\}.$

It is easily seen that $P_h \subset P$.

Definition 1. An operator $T : E \longrightarrow E$ is said to be increasing (resp. decreasing) if, for any $x, y \in E, x \le y$ implies $Tx \le Ty$ (resp. $Tx \ge Ty$).

Definition 2. An operator $A : P \times P \longrightarrow P$ is called mixed monotone if A(x, y) is increasing in x and decreasing in y, i.e., for any $(x, y), (u, v) \in P \times P$,

 $x \le u$ and $y \ge v \Rightarrow A(x, y) \le A(u, v)$.

Definition 3. An operator $B : P \longrightarrow P$ is called subhomogeneous if

 $B(tx) \ge tBx$, for any $t \in (0, 1)$ and $x \in P$.

The following result appears in [13] and it gives us the mixed monotone operator method which we will use in the proof of our main result.

Theorem 1. Suppose that $\alpha \in (0, 1)$, $h \in E$ with $\theta_E < h$, and P is a normal cone in the Banach space $(E, \|\cdot\|)$. Let $A : P \times P \longrightarrow P$ be a mixed monotone operator such that

 $A(tx, t^{-1}y) \ge t^{\alpha}A(x, y)$, for any $t \in (0, 1)$ and $x, y \in P$.

Let $B: P \longrightarrow P$ be an increasing subhomogeneous operator. Assume that

- (i) there exists $h_0 \in P_h$ such that $A(h_0, h_0) \in P_h$ and $Bh_0 \in P_h$,
- (ii) there exists a constant $\delta_0 > 0$ such that

$$A(x, y) \ge \delta_0 B x$$
, for any $x, y \in P$

then

(a) $A: P_h \times P_h \longrightarrow P_h$ and $B: P_h \longrightarrow P_h$,

(b) there exist $u_0, v_0 \in P_h$ and $r \in (0, 1)$ such that $rv_0 \le u_0 \le v_0$ and

$$u_0 \leq A(u_0, v_0) + Bu_0 \leq A(v_0, u_0) + Bv_0 \leq v_0,$$

Download English Version:

https://daneshyari.com/en/article/5776179

Download Persian Version:

https://daneshyari.com/article/5776179

Daneshyari.com