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a b s t r a c t

In this paper, we use a mixed monotone operator method to investigate the existence and
uniqueness of positive solution to a nonlinear fourth-order boundary value problemwhich
describes the deflection of an elastic beamwith the left extreme fixed and the right extreme
is attached to a bearing device given by a known function. Moreover, we present a concrete
example illustrating the result obtained.
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1. Introduction and preliminaries

Fourth-order two-point boundary value problems have been studied by different authors because they describe the
deflection of an elastic beam (see [1–12] and the references therein, for example).

The main tool in our study is a mixed monotone operator method. This technique was used by the authors in [12] in the
study of the following nonlinear boundary value problem⎧⎨⎩u(4)(t) = λf (t, u(t)), t ∈ (0, 1),

u(0) = 0, u′(0) = µh(u(0)),
u′′(1) = 0, u′′′(1) = µg(u(1)),

(1)

where λ > 0, µ ≥ 0 and f , g, h are functions given.
In [10], the authors study the existence and uniqueness of positive solutions for the nonlinear boundary value problem⎧⎨⎩u(4)(t) = f (t, u(t)), t ∈ (0, 1),

u(0) = u′(0) = u′′(1) = 0,
u′′′(1) = g(u(1)),

(2)

where f , g are functions given, by using a mixed monotone operator method.
Using the same technique in [11] the authors study the existence and uniqueness of positive solutions for the boundary

value problem⎧⎨⎩u(4)(t) = f (t, u(t), u′(t)), t ∈ (0, 1),
u(0) = u′(0) = u′′(1) = 0,
u′′′(1) = g(u(1)),

(3)

where f , g are functions given.
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Motivated by the above mentioned papers, by using a mixed monotone operator method, we study the existence and
uniqueness of positive solutions for the following boundary value problem.⎧⎨⎩u(4)(t) = f (t, u(t), (Hu)(t)), t ∈ [0, 1],

u(0) = u′(0) = u′′(1) = 0,
u′′′(1) = g(u(1)),

(4)

where f : [0, 1] × [0, ∞) × [0, ∞) → [0, ∞), g : [0, ∞) → (−∞, 0] are continuous functions and H is an operator (not
necessarily linear) applying C[0, 1] into itself and satisfying certain assumptions.

Next, we present some definitions, notations and results which will be used in the proof of our main result.
Suppose that (E, ∥ · ∥) is a real Banach space. A nonempty closed convex set P ⊂ E is said to be a cone if it satisfies:

1. x ∈ P and λ ≥ 0 ⇒ λx ∈ P .
2. −x, x ∈ P ⇒ x = θE ,

where θE denotes the zero element of E.
Suppose that P is a cone in the Banach space (E, ∥ · ∥). Then P induces a partial order in E given by,

x, y ∈ E, x ≤ y ⇔ y − x ∈ P .

By x < y, we denote x ≤ y and x ̸= y.
If interior of P , P̊ , is nonempty, we say that the cone P is solid.
If there exists a constant C > 0 such that, for any x, y ∈ E with θE ≤ x ≤ y implies ∥x∥ ≤ C∥y∥ then the cone P is said to

be normal. In this case, the smallest constant C satisfying the last inequality is called the normality constant of P .
For x, y ∈ E, we denote x ∼ ywhen there exist constants λ, µ > 0 such that

λy ≤ x ≤ µy.

Clearly ∼ is an equivalence relation.
For θE < h, we denote by Ph the set

Ph = {x ∈ E : x ∼ h}.

It is easily seen that Ph ⊂ P .

Definition 1. An operator T : E −→ E is said to be increasing (resp. decreasing) if, for any x, y ∈ E, x ≤ y implies Tx ≤ Ty
(resp. Tx ≥ Ty).

Definition 2. An operator A : P × P −→ P is called mixed monotone if A(x, y) is increasing in x and decreasing in y, i.e., for
any (x, y), (u, v) ∈ P × P ,

x ≤ u and y ≥ v ⇒ A(x, y) ≤ A(u, v).

Definition 3. An operator B : P −→ P is called subhomogeneous if

B(tx) ≥ tBx, for any t ∈ (0, 1) and x ∈ P .

The following result appears in [13] and it gives us the mixed monotone operator method which we will use in the proof
of our main result.

Theorem 1. Suppose that α ∈ (0, 1), h ∈ E with θE < h, and P is a normal cone in the Banach space (E, ∥·∥). Let A : P×P −→ P
be a mixed monotone operator such that

A(tx, t−1y) ≥ tαA(x, y), for any t ∈ (0, 1) and x, y ∈ P .

Let B : P −→ P be an increasing subhomogeneous operator.
Assume that

(i) there exists h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph,
(ii) there exists a constant δ0 > 0 such that

A(x, y) ≥ δ0Bx, for any x, y ∈ P

then

(a) A : Ph × Ph −→ Ph and B : Ph −→ Ph,
(b) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 ≤ v0 and

u0 ≤ A(u0, v0) + Bu0 ≤ A(v0, u0) + Bv0 ≤ v0,
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