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a b s t r a c t

The pricing of options in the fast mean-reverting stochastic volatility model using the
singular perturbation method has received a considerable amount of attention in the last
two decades. However, it is not to easy to estimate the accuracy of the approximation if the
payoff function is not smooth or bounded, as is the case for European call options. In this
article, we introduce a new novel approach for pricing options in the fast mean-reverting
stochastic volatility model. Combinations of Fourier analysis and singular perturbation
methods enable us to estimate the accuracy easily.We also show that thismethod allows us
to derive the price of European and Bermudan options in the fastmean-reverting stochastic
volatility environment with jumps.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents new pricing methods of European options in the fast mean-reverting stochastic volatility model
using Fourier analysis and singular perturbation methods. The pricing of various types of options in the fast mean-reverting
stochastic volatility environment has been discussed in [1–3] for example. Because this method enables us to derive an
asymptotic approximation formula for the price of options in the stochastic volatility models very easily, the pricing of
options in the fast mean-reverting stochastic volatility model has received a considerable amount of attention. The pricing
of exotic options, for example, has been discussed by Fouque and Han [4], Ilhan et al. [5], and Zhu and Chen [6], among
others. Although it is a relatively straightforward task to derive the asymptotical approximation formulas for option prices,
it is not easy to estimate its accuracy especially when the payoff function is not smooth. This means that it is not easy to
estimate the accuracy of the asymptotic approximation price of European call (put) options because the price of European
options creates a singularity at the strike price at the maturity date. See [2,7], for the validity of this method. In order to
overcome this difficulty, we use Fourier analysis to obtain the approximation price for European options in the fast mean-
reverting stochastic volatility environment. We compute the characteristic functions using partial differential equation
(PDE) approach instead of the option price itself. This method enables us to estimate the accuracy of the obtained option
prices rigorously and easily because one can assume the smoothness and boundedness to the terminal condition in this
PDE. The characteristic function approach is one of the most important approaches for option pricing. Many researchers
have been attracted to the tractability of the Fourier transform approach. See [8–11], for example.

The remainder of this paper is organized as follows. The fast mean-reverting stochastic volatility model is introduced in
Section 2. In this section, we derive the asymptotic approximation formula for the Fourier transform of the underlying asset
price in the fast mean-reverting stochastic volatilitymodel. In Section 3, we show the pricingmethod of European options in
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the fast mean-reverting stochastic volatilitymodel using the Fourier transform approach.We also discuss the validity of this
method. In Section 4, we show numerical results using the jump diffusion model with the fast mean-reverting stochastic
volatility, followed by concluding remarks in Section 5.

2. Fast mean-reverting stochastic volatility model

We assume that the price of the underlying asset, St = eX
ϵ
t , is governed by a stochastic differential equation (SDE) with

a stochastic volatility component given by

dXϵt =


r −

1
2
f 2(Y ϵt )


dt + f (Y ϵt )


ρdWt +


1 − ρ2dZt


, Xϵ0 = x0 = log(s0) (1)

dY ϵt =


1
ϵ
(m − Y ϵt )− ν


2
ϵ
Λ(Y ϵt )


dt + ν


2
ϵ
dWt

under the risk neutralmeasureP, where |ρ| < 1. The two stochastic processesWt and Zt are independent standard Brownian
motions, and the constant r (> 0) represents the spot interest rate in this economy. We also assume that ν is a positive
constant. The functionΛ(y) is given by

Λ(y) = ρ
µ− r
f (y)

+


1 − ρ2γ (y),

whereµ is the drift term of the underlying asset price process under the physical measure. We also assume that ϵ is a small
positive constant 0 < ϵ ≪ 1. We also impose the following assumptions upon the functions f (·) and γ (·):

Assumption 2.1. We impose the following assumptions upon f (·) and γ (·),

(1) The volatility function f (·) is a positive, bounded, and bounded away from 0. In other words, we assume the relationship
0 < c < f (y) < c̄ < ∞ for all y.

(2) The market price of the volatility risk given by γ (y) is a bounded function, i.e. |γ (y)| < l < ∞.

In this study, we compute the characteristic function of the log-price of the underlying asset at the maturity date T using
the singular perturbation methods introduced by Fouque et al. [1]. The conditional characteristic function of the random
variable XϵT is denoted by ΨXϵ :

ΨXϵ (t, x, y, θ) = E[eiθX
ϵ
T |Xϵt = x, Y ϵt = y].

The Feynman and Kac theorem leads to a PDE for ΨXϵ given by

L ϵΨXϵ = 0, ΨXϵ (T , x, y, θ) = eiθx (2)

where the new operator L ϵ is given by
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Note that the terminal condition for the PDE (2) indicates that the smoothness of ΨXϵ at T . We assume that there is a formal
asymptotic expansion of ΨXϵ on the parameter ϵ as

ΨXϵ = Ψ0 +
√
ϵΨ1 + ϵΨ2 + · · · .

Inserting this expansion into the PDE in (2), we obtain an equation for the O(ϵ−1)-order term given by

L0Ψ0 = 0.

Note that the characteristic function is a bounded function and Ψ0 does not depend on the variable y, i.e. Ψ0 = Ψ0(t, x, θ).
As the O(ϵ−1)-order term, we equate the O(ϵ−1/2)-order term to 0, and obtain

L0Ψ1 + L1Ψ0 = 0.
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