The maximum product of sizes of cross-intersecting families
 Peter Borg
 Department of Mathematics, University of Malta, Malta

ARTICLE INFO

Article history:

Received 14 May 2016
Received in revised form 30 December 2016
Accepted 24 April 2017
Available online 25 May 2017

Keywords:

Intersecting family
Cross-intersecting families

Abstract

A set of sets is called a family. Two families \mathcal{A} and \mathcal{B} are said to be cross-t-intersecting if each set in \mathcal{A} intersects each set in \mathcal{B} in at least t elements. For a family \mathcal{F}, let $l(\mathcal{F}, t)$ denote the size of a largest subfamily of \mathcal{F} whose sets have at least t common elements. We call \mathcal{F} a $(\leq r)$-family if each set in \mathcal{F} has at most r elements. We show that for any positive integers r, s and t, there exists an integer $c(r, s, t)$ such that the following holds. If \mathcal{A} is a subfamily of a $(\leq r)$-family \mathcal{F} with $l(\mathcal{F}, t) \geq c(r, s, t) l(\mathcal{F}, t+1), \mathcal{B}$ is a subfamily of a ($\leq s$)-family \mathcal{G} with $l(\mathcal{G}, t) \geq c(r, s, t) l(\mathcal{G}, t+1)$, and \mathcal{A} and \mathcal{B} are cross- t-intersecting, then $|\mathcal{A}||\mathcal{B}| \leq l(\mathcal{F}, t) l(\mathcal{G}, t)$. We give $c(r, s, t)$ explicitly. Some known results follow from this, and we identify several natural classes of families for which the bound is attained.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Unless otherwise stated, we shall use small letters such as x to denote non-negative integers or set elements or functions, capital letters such as X to denote sets, and calligraphic letters such as \mathcal{F} to denote families (that is, sets whose members are sets themselves). The set $\{1,2, \ldots\}$ of positive integers is denoted by \mathbb{N}. For any $m, n \in \mathbb{N}$ with $m \leq n$, the set $\{i \in \mathbb{N}: m \leq i \leq n\}$ is denoted by $[m, n]$. We abbreviate $[1, n]$ to [n]. We call a set A an r-element set, or simply an r-set, if its size $|A|$ is r. For a set X, the power set of X (that is, the family of subsets of X) is denoted by 2^{X}, and the family of r-element subsets of X is denoted by $\binom{X}{r}$. It is to be assumed that arbitrary sets and families are finite.

We say that a set A t-intersects a set B if A and B have at least t common elements. A family \mathcal{A} of sets is said to be t-intersecting if every two sets in $\mathcal{A} t$-intersect. A 1-intersecting family is also simply called an intersecting family.

For a family \mathcal{F} and a set T, we denote the family $\{F \in \mathcal{F}: T \subseteq F\}$ by $\mathcal{F}(T)$. We call $\mathcal{F}(T)$ a t-star of \mathcal{F} if $|T|=t$. A t-star of a family is the simplest example of a t-intersecting subfamily. We denote the size of a largest t-star of \mathcal{F} by $l(\mathcal{F}, t)$. We denote the set of largest t-stars of \mathcal{F} by $\mathrm{L}(\mathcal{F}, t)$. We say that \mathcal{F} has the t-star property if at least one t-star of \mathcal{F} is a largest t-intersecting subfamily of \mathcal{F}.

One of the most popular endeavours in extremal set theory is that of determining the size or the structure of a largest t-intersecting subfamily of a given family \mathcal{F}. This originated in [26], which features the classical Erdős-Ko-Rado (EKR) Theorem. The EKR Theorem says that for $1 \leq t \leq r$ there exists an integer $n_{0}(r, t)$ such that for $n \geq n_{0}(r, t)$, the size of a largest t-intersecting subfamily of $\binom{[n]}{r}$ is $\binom{n-t}{r-t}$, meaning that $\binom{[n]}{r}$ has the t-star property. It also says that the smallest possible $n_{0}(r, 1)$ is $2 r$; among the various proofs of this fact (see [22,26,32,38,42,44]) there is a short one by Katona [44], introducing the elegant cycle method, and another one by Daykin [22], using the Kruskal-Katona Theorem [43,46]. Note that $\binom{[n]}{r}$ itself is intersecting if $n<2 r$. The EKR Theorem inspired a sequence of results [1,28,31,59] that culminated in the complete solution of the problem for t-intersecting subfamilies of $\binom{[n]}{r}$. The solution had been conjectured by Frankl [28]. It particularly tells us that the smallest possible $n_{0}(r, t)$ is $(t+1)(r-t+1)$; this was established by Frankl [28] for $t \geq 15$, and subsequently by Wilson [59] for any t. Ahlswede and Khachatrian [1] settled the case $n<(t+1)(r-t+1)$. The t-intersection

[^0]problem for $2^{[n]}$ was solved by Katona [42]. These are among the most prominent results in extremal set theory. The EKR Theorem inspired a wealth of results that establish how large a system of sets can be under certain intersection conditions; see [11,24,29,30,35,40,41].

Two families \mathcal{A} and \mathcal{B} are said to be cross-t-intersecting if each set in $\mathcal{A} t$-intersects each set in \mathcal{B}. More generally, k families $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ are said to be cross-t-intersecting if for every $i, j \in[k]$ with $i \neq j$, each set in $\mathcal{A}_{i} t$-intersects each set in \mathcal{A}_{j}. Cross-1-intersecting families are also simply called cross-intersecting families.

For t-intersecting subfamilies of a given family \mathcal{F}, the natural question to ask is how large they can be. For cross- t intersecting families, two natural parameters arise: the sum and the product of sizes of the cross- t-intersecting families (note that the product of sizes of k families $\mathcal{A}_{1}, \ldots, \mathcal{A}_{k}$ is the number of k-tuples $\left(A_{1}, \ldots, A_{k}\right)$ such that $A_{i} \in \mathcal{A}_{i}$ for each $i \in[k]$). It is therefore natural to consider the problem of maximizing the sum or the product of sizes of k cross- t-intersecting subfamilies (not necessarily distinct or non-empty) of a given family \mathcal{F}. The paper [14] analyses this problem in general, particularly reducing it to the problem of maximizing the size of a t-intersecting subfamily of \mathcal{F} for k sufficiently large. Solutions have been obtained for various families (see [14]).

Wang and Zhang [58] solved the maximum sum problem for an important class of families that particularly includes $\binom{[n]}{r}$, using a striking combination of the method in $[8-10,12,19]$ and the no-homomorphism lemma ([3, Theorem 2], [20, Theorem 3]). The solution for $\mathcal{F}=\binom{[n]}{r}$ and $t=1$ had been obtained by Hilton [37] and is the first result that addressed the cross-intersection problem described above. The maximum sum problem for $2^{[n]}$ was solved by the author [14, Theorems 3.10, 4.1] via the results in [42,45,58]. The maximum product problem for $2^{[n]}$ was settled by Matsumoto and Tokushige [51] for $k=2$; the solution extends for the case where $k>2$ and $n+t$ is even (see [14, Section 5.2], which features a conjecture for the case where $k>2$ and $n+t$ is odd).

In this paper, we address the maximum product problem for the more general setting where, for each $i \in[k], \mathcal{A}_{i}$ is a subfamily of a family \mathcal{F}_{i}. This has been considered for a few special families [13,16,39,50,55]. As we explain in Section 2 , in many cases it is enough to solve the problem for $k=2$ (see Lemma 2.5).

The maximum product problem for $\binom{[n]}{r}$ was first addressed by Pyber [55], who proved that for $r, s, n \in \mathbb{N}$ such that either $r=s \leq n / 2$ or $r<s$ and $n \geq 2 s+r-2$, if $\mathcal{A} \subseteq\binom{[n]}{r}$ and $\mathcal{B} \subseteq\binom{[n]}{s}$ such that \mathcal{A} and \mathcal{B} are cross-intersecting, then $|\mathcal{A}||\mathcal{B}| \leq\binom{ n-1}{r-1}\binom{n-1}{s-1}$. Subsequently, Matsumoto and Tokushige [50] proved this for $r \leq s \leq n / 2$ (see also [5]). For cross- t-intersecting subfamilies, we have the following.

Theorem 1.1 ([13]). For $1 \leq t \leq r \leq s$, there exists an integer $n_{0}(r, s, t)$ such that for $n \geq n_{0}(r, s, t)$, if $\mathcal{A} \subseteq\binom{[n]}{r}, \mathcal{B} \subseteq\binom{[n]}{s}$, and \mathcal{A} and \mathcal{B} are cross- t-intersecting, then $|\mathcal{A}||\mathcal{B}| \leq\binom{ n-t}{r-t}\binom{n-t}{s-t}$, and equality holds if and only if $\mathcal{A}=\left\{A \in\binom{[n]}{r}: T \subseteq A\right\}$ and $\mathcal{B}=\left\{B \in\binom{[n]}{s}: T \subseteq B\right\}$ for some $T \in\binom{[n]}{t}$.

Hirschorn made a Frankl-type conjecture [39, Conjecture 4] for any r, s, t and n. In [18], a value of $n_{0}(r, s, t)$ that is close to best possible is established. The special case $r=s$ is treated in [33,56,57], which establish values of $n_{0}(r, r, t)$ that are also nearly optimal.

Let $c: \mathbb{N}^{3} \rightarrow \mathbb{N}$ such that for $r, s, t \in \mathbb{N}, c(r, s, t)=\max \left\{r\binom{s}{t}, s\binom{r}{t}\right\}+1$ if $t \leq \min \{r, s\}$, and $c(r, s, t)=1$ otherwise. Clearly, $c(r, s, t)=r\binom{s}{t}+1$ for $t \leq r \leq s$.

We call a family \mathcal{F} a $(\leq r)$-family if each set in \mathcal{F} has at most r elements. The following is our main result.
Theorem 1.2. If $r, s, t \in \mathbb{N}, \mathcal{F}$ is $a(\leq r)$-family with $l(\mathcal{F}, t) \geq c(r, s, t) l(\mathcal{F}, t+1)$, \mathcal{G} is a ($\leq s)$-family with $l(\mathcal{G}, t) \geq$ $c(r, s, t) l(\mathcal{G}, t+1)$, and \mathcal{A} and \mathcal{B} are cross-t-intersecting families such that $\mathcal{A} \subseteq \mathcal{F}$ and $\mathcal{B} \subseteq \mathcal{G}$, then

$$
|\mathcal{A}||\mathcal{B}| \leq l(\mathcal{F}, t) l(\mathcal{G}, t)
$$

and if $l(\mathcal{F}, t) l(\mathcal{G}, t)>0$, then equality holds if and only if $\mathcal{A}=\mathcal{F}(T) \in \mathrm{L}(\mathcal{F}, t)$ and $\mathcal{B}=\mathcal{G}(T) \in \mathrm{L}(\mathcal{G}, t)$ for some t-set T.
Theorem 1.2 is proved in Section 3. As we show in Section 4, it solves the problem for many natural families with a sufficiently large parameter depending on r, s and t. For example, Theorem 1.1 follows from Theorem 1.2 by taking n large enough so that $\binom{n-t}{r-t} \geq c(r, s, t)\binom{n-t-1}{r-t-1}$; see Section 4.1.

For $r, s, t \in \mathbb{N}$, let $\chi(r, s, t)$ be the smallest non-negative real number a such that $|\mathcal{A}||\mathcal{B}| \leq l(\mathcal{F}, t) l(\mathcal{G}, t)$ for every $\mathcal{A}, \mathcal{B}, \mathcal{F}$ and \mathcal{G} such that \mathcal{F} is a $(\leq r)$-family with $l(\mathcal{F}, t) \geq a l(\mathcal{F}, t+1), \mathcal{G}$ is a $(\leq s)$-family with $l(\mathcal{G}, t) \geq a l(\mathcal{G}, t+1), \mathcal{A} \subseteq \mathcal{F}, \mathcal{B} \subseteq \mathcal{G}$, and \mathcal{A} and \mathcal{B} are cross- t-intersecting.

Problem 1.3. What is the value of $\chi(r, s, t)$?
By Theorem 1.2, $\chi(r, s, t) \leq c(r, s, t)$.
In Theorem 1.2, the case $\mathcal{F}=\mathcal{G}$ is of particular importance. First of all, it implies that \mathcal{F} has the t-star property if $l(\mathcal{F}, t) \geq c(r, r, t) l(\mathcal{F}, t+1)$.

Theorem 1.4. If $1 \leq t \leq r$ and \mathcal{A} is a t-intersecting subfamily of $a(\leq r)$-family \mathcal{F} with $l(\mathcal{F}, t) \geq c(r, r, t) l(\mathcal{F}, t+1)$, then

$$
|\mathcal{A}| \leq l(\mathcal{F}, t)
$$

and if $l(\mathcal{F}, t)>0$, then equality holds if and only if $\mathcal{A} \in \mathrm{L}(\mathcal{F}, t)$.

https://daneshyari.com/en/article/5776769

Download Persian Version:
https://daneshyari.com/article/5776769

Daneshyari.com

[^0]: E-mail address: peter.borg@um.edu.mt.

