
Please cite this article in press as: Ts.Ch-D. Batueva, et al., Refined weight of edges in normal plane maps, Discrete Mathematics (2016),
http://dx.doi.org/10.1016/j.disc.2016.10.007

Discrete Mathematics ( ) –

Contents lists available at ScienceDirect

Discrete Mathematics
journal homepage: www.elsevier.com/locate/disc

Refined weight of edges in normal plane maps✩

Ts.Ch-D. Batueva a, O.V. Borodin a,*, M.A. Bykov b, A.O. Ivanova c, O.N. Kazak c,
D.V. Nikiforovc

a Sobolev Institute of Mathematics, Novosibirsk 630090, Russia
b Novosibirsk State University, Novosibirsk 630090, Russia
c Ammosov North-Eastern Federal University, Yakutsk, 677000, Russia

a r t i c l e i n f o

Article history:
Received 23 May 2016
Received in revised form 18 September
2016
Accepted 10 October 2016
Available online xxxx

Dedicated to the memory of Professor
Horst Sachs

Keywords:
Planar graph
Plane map
Structure properties
3-polytope
Weight

a b s t r a c t

The weight w(e) of an edge e in a normal plane map (NPM) is the degree-sum of its end-
vertices. An edge e = uv is of type (i, j) if d(u) ≤ i and d(v) ≤ j. In 1940, Lebesgue proved
that every NPM has an edge of one of the types (3, 11), (4, 7), or (5, 6), where 7 and 6 are
best possible. In 1955, Kotzig proved that every 3-connected planar graph has an edge e
with w(e) ≤ 13, which bound is sharp. Borodin (1989), answering Erdős’ question, proved
that every NPM has either a (3, 10)-edge, or (4, 7)-edge, or (5, 6)-edge.

A vertex is simplicial if it is completely surrounded by 3-faces. In 2010, Ferencová
and Madaras conjectured (in different terms) that every 3-polytope without simplicial
3-vertices has an edge ewithw(e) ≤ 12. Recently, we confirmed this conjecture by proving
that every NPM has either a simplicial 3-vertex adjacent to a vertex of degree at most 10,
or an edge of types (3, 9), (4, 7), or (5, 6).

By a k(ℓ)-vertex we mean a k-vertex incident with precisely ℓ triangular faces. The
purpose of our paper is to prove that every NPM has an edge of one of the following
types: (3(3), 10), (3(2), 9), (3(1), 7), (4(4), 7), (4(3), 6), (5(5), 6), or (5, 5), where all bounds are
best possible. In particular, this implies that the bounds in (3, 10), (4, 7), and (5, 6) can be
attained only at NPMs having a simplicial 3-, 4-, or 5-vertex, respectively.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A normal plane map (NPM) is a plane pseudograph in which loops and multiple edges are allowed, but the degree of
each vertex and face is at least three.

The degree of a vertex v or a face f , that is the number of edges incident with v or f (loops and cut-edges are counted
twice) is denoted by d(v) or d(f ), respectively. A k-vertex is a vertex v with d(v) = k. By k+ or k− we denote any integer not
smaller or not greater than k, respectively. Hence, a k+-vertex v satisfies d(v) ≥ k, etc.

An edge uv is an (i, j)-edge if d(u) ≤ i and d(v) ≤ j. By a k(ℓ)-vertexwemean a k-vertex incident with precisely ℓ triangular
faces. An edge uv is an edge of type (i(ℓ), j) if u is an i(ℓ)-vertex and d(v) ≤ j.

By δ(G) and w(G) we denote the minimum vertex degree and the minimum weight of edges of a graph G, respectively.
We will drop the argument when it is clear from context.
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Already in 1904, Wernicke [17] proved that every NPM with δ = 5 satisfies w ≤ 11. In 1940, Lebesgue [15] proved that
every NPM has a (3, 11)-edge, or (4, 7)-edge, or (5, 6)-edge, where 7 and 6 are best possible. In 1955, Kotzig [14] proved that
every 3-connected planar graph satisfies w ≤ 13, which bound is sharp.

In 1972, Erdős (see [11]) conjectured that Kotzig’s bound w ≤ 13 holds for all planar graphs with δ ≥ 3. Barnette
(see [11]) announced to have proved this conjecture, but the proof has never appeared in print. The first published proof of
Erdős’ conjecture is due to Borodin [1].

More generally, Borodin [3–5] proved that every NPM contains a (3, 10)-, or (4, 7)-, or (5, 6)-edge (as easy corollaries of
some stronger structural facts having applications to coloring of plane graphs, see [6]).

Note that δ(K2,t ) = 2 and w(K2,t ) = t + 2, so w is unbounded if δ ≤ 2. To obtain more detailed information on the local
structure of plane graphs of minimum degree at least 2, various approaches were developed, one of them being based on the
following concept. An induced cycle v1 . . . v2k in a graph is 2-alternating (Borodin [2]) if d(v1) = d(v3) = · · · = d(v2k−1) = 2.
This notion, along with its more sophisticated analogues (t-alternating subgraph, 3-alternator (Borodin, Kostochka, and
Woodall [9]), cycle consisting of 3-paths (Borodin and Ivanova [7]), etc.), turns out to be useful for the study of graph coloring,
since it sometimes provides crucial reducible configurations in coloring and partition problems (more often, on sparse plane
graphs, see Borodin [6]). Its first application was to show that the total chromatic number of planar graphs with maximum
degree∆ at least 14 equals∆+1 (Borodin [2]). In particular, forbidding 2-alternating 4-cycles impliesw ≤ 17 (Borodin [1]),
while forbidding all 2-alternating cycles implies w ≤ 15 (Borodin [2]), where both bounds are tight.

In some coloring applications, it is important to find a light edge incident with one or two 5−-faces. Nowadays, the
maximum weight of edges is known for many interesting classes of plane graphs (further examples and references can
be found in [3–6,10,12,13]).

As proved by Steinitz [16], the 3-connected plane graphs are planar representations of the convex 3-dimensional
polytopes, called hereafter 3-polytopes.

Further analogues of the above results may be obtained when taking into account the optimization of sizes of faces
surrounding endvertices of light edges. A vertex is simplicial if it is completely surrounded by 3-faces. In 2010, Ferencová and
Madaras conjectured (in different terms) that every 3-polytope without simplicial 3-vertices has an edge ewith w(e) ≤ 12.
Recently, Borodin and Ivanova [8] confirmed this conjecture by proving, moreover, that every NPM has either a simplicial
3-vertex adjacent to a vertex of degree at most 10, or an edge of types (3, 9), (4, 7), or (5, 6).

The purpose of our paper is to refine the result in [8] by taking into account the number of 3-faces at 5−-vertices.

Theorem 1. Every normal plane map has an edge of one of the following types: (3(3), 10), (3(2), 9), (3(1), 7), (4(4), 7), (4(3), 6),
(5(5), 6), or (5, 5), where all bounds are best possible.

In particular, this implies that the bounds in (3, 10), (4, 7), and (5, 6) can be attained only at NPMs having a simplicial
3-, 4-, or 5-vertex, respectively.

2. Proving Theorem 1

2.1. Constructions confirming the sharpness in Theorem 1

The sharpness of the term (3(3), 10) in Theorem 1 follows by putting a 3-vertex into each face of the icosahedron. The
sharpness of (3(2), 9) was confirmed in Borodin–Ivanova [8] (see Fig. 1). In Fig. 2, we see a construction that shows the
sharpness of (3(1), 7). To reach the bound 7 in (4(4), 7), we take the (3, 4, 4, 4)-Archimedean solid, in which every vertex is
incident with a 3-face and three 4-faces, and put a 4-vertex into each 4-face. The sharpness of (4(3), 6) is confirmed by Fig. 3.
To see that (5(5), 6) is best possible, it suffices to put a 5-vertex into every face of the dodecahedron. Finally, the tightness
of the term (5, 5) follows from the (3, 3, 3, 3, 4)-Archimedean solid, in which every vertex is incident with four 3-faces and
one 4-face.

2.2. Discharging

Suppose M ′ is a counterexample to Theorem 1 with the smallest possible number of vertices. Hence M ′ is connected. By
M denote a counterexample to Theorem 1 with the maximum number of edges on the same vertices as M ′. In other words,
adding any diagonal to a 4+-face ofM must result in an edge claimed in Theorem 1.

Let V , E, and F be the sets of vertices, edges and faces ofM , respectively. Euler’s formula |V | − |E| + |F | = 2 forM may be
rewritten as∑

v∈V

(d(v) − 6) +

∑
f∈F

(2d(f ) − 6) = −12. (1)

Every vertex v contributes the charge µ(v) = d(v) − 6 to (1), so only the charges of 5−-vertices are negative. Every face
f contributes the non-negative charge µ(f ) = 2d(f ) − 6 to (1). Using the properties of M as a counterexample, we define a
local redistribution of µ’s, preserving their sum, such that the new charge µ′(x) is non-negative for all x ∈ V ∪ F . This will
contradict the fact that the sum of the new charges is, by (1), equal to −12.
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