Note

The numbers of edges of the order polytope and the chain polytope of a finite partially ordered set

Takayuki Hibi ${ }^{\mathrm{a}}$, Nan Li ${ }^{\mathrm{b}}$, Yoshimi Sahara ${ }^{\mathrm{a}}$, Akihiro Shikama ${ }^{\mathrm{a}, *}$
${ }^{\text {a }}$ Department of Pure and Applied Mathematics, Graduate School of Information Science and Technology, Osaka University, Toyonaka, Osaka 560-0043, Japan
${ }^{\text {b }}$ Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

A R TICLE IN F O

Article history:

Received 11 October 2015
Received in revised form 8 November 2016
Accepted 4 January 2017
Available online 8 February 2017

Keywords:

Chain polytope
Order polytope
Partially ordered set

Abstract

Let P be an arbitrary finite partially ordered set. It will be proved that the number of edges of the order polytope $\mathscr{O}(P)$ is equal to that of the chain polytope $\mathscr{C}(P)$. Furthermore, it will be shown that the degree sequence of the finite simple graph which is the 1 -skeleton of $\mathscr{O}(P)$ is equal to that of $\mathscr{C}(P)$ if and only if $\mathscr{O}(P)$ and $\mathscr{C}(P)$ are unimodularly equivalent.

© 2017 Elsevier B.V. All rights reserved.

0. Introduction

In [5] the combinatorial structure of the order polytope $\mathscr{O}(P)$ and the chain polytope $\mathscr{C}(P)$ of a finite poset (partially ordered set) P is studied in detail. Furthermore, the problem when $\mathscr{O}(P)$ and $\mathscr{C}(P)$ are unimodularly equivalent is solved in [3]. In this paper it is proved that, for an arbitrary finite poset P, the number of edges of the order polytope $\mathscr{O}(P)$ is equal to that of the chain polytope $\mathscr{C}(P)$. Furthermore, it is shown that the degree sequence of the finite simple graph which is the 1-skeleton of $\mathscr{O}(P)$ is equal to that of $\mathscr{C}(P)$ if and only if $\mathscr{O}(P)$ and $\mathscr{C}(P)$ are unimodularly equivalent.

1. Edges of order polytopes and chain polytopes

Let $P=\left\{x_{1}, \ldots, x_{d}\right\}$ be a finite poset. Given a subset $W \subset P$, we introduce $\rho(W) \in \mathbb{R}^{d}$ by setting $\rho(W)=\sum_{i \in W} \mathbf{e}_{i}$, where $\mathbf{e}_{1}, \mathbf{e}_{2} \ldots, \mathbf{e}_{d}$ are the canonical unit coordinate vectors of \mathbb{R}^{d}. In particular $\rho(\emptyset)$ is the origin of \mathbb{R}^{d}. A poset ideal of P is a subset I of P such that, for all x_{i} and x_{j} with $x_{i} \in I$ and $x_{j} \leq x_{i}$, one has $x_{j} \in I$. An antichain of P is a subset A of P such that x_{i} and x_{j} belonging to A with $i \neq j$ are incomparable. The empty set \emptyset is a poset ideal as well as an antichain of P. We say that x_{j} covers x_{i} if $x_{i}<x_{j}$ and $x_{i}<x_{k}<x_{j}$ for no $x_{k} \in P$. A chain $x_{j_{1}}<x_{j_{2}}<\cdots<x_{j_{\ell}}$ of P is called saturated if $x_{j_{q}}$ covers $x_{j_{q-1}}$ for $1<q \leq \ell$.

The order polytope of P is the convex polytope $\mathscr{O}(P) \subset \mathbb{R}^{d}$ which consists of those $\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{R}^{d}$ such that $0 \leq a_{i} \leq 1$ for every $1 \leq i \leq d$ together with

$$
a_{i} \geq a_{j}
$$

if $x_{i} \leq x_{j}$ in P.

[^0]

Fig. 1. The Poset X.

The chain polytope of P is the convex polytope $\mathscr{C}(P) \subset \mathbb{R}^{d}$ which consists of those $\left(a_{1}, \ldots, a_{d}\right) \in \mathbb{R}^{d}$ such that $a_{i} \geq 0$ for every $1 \leq i \leq d$ together with

$$
a_{i_{1}}+a_{i_{2}}+\cdots+a_{i_{k}} \leq 1
$$

for every maximal chain $x_{i_{1}}<x_{i_{2}}<\cdots<x_{i_{k}}$ of P.
One has $\operatorname{dim} \mathscr{O}(P)=\operatorname{dim} \mathscr{C}(P)=d$. The vertices of $\mathscr{O}(P)$ is those $\rho(I)$ for which I is a poset ideal of P ([5, Corollary 1.3]) and the vertices of $\mathscr{C}(P)$ is those $\rho(A)$ for which A is an antichain of P ([5, Theorem 2.2]). It then follows that the number of vertices of $\mathscr{O}(P)$ is equal to that of $\mathscr{C}(P)$. Furthermore, the volume of $\mathscr{O}(P)$ and that of $\mathscr{C}(P)$ are equal to $e(P) / d!$, where $e(P)$ is the number of linear extensions of P ([5, Corollary 4.2]).

In [4] a characterization of edges of $\mathscr{O}(P)$ and those of $\mathscr{C}(P)$ is obtained. Recall that a subposet Q of a finite poset P is said to be connected in P if, for each x and y belonging to Q, there exists a sequence $x=x_{0}, x_{1}, \ldots, x_{s}=y$ with each $x_{i} \in Q$ for which x_{i-1} and x_{i} are comparable in P for each $1 \leq i \leq s$.

Lemma 1.1. Let P be a finite poset.
(a) Given poset ideals I and J with $I \neq J$, the segment combining $\rho(I)$ with $\rho(J)$ is an edge of $\mathscr{O}(P)$ if and only if $I \subset J$ and $J \backslash I$ is connected in P.
(b) Given antichains A and B with $A \neq B$, the segment combining $\rho(A)$ with $\rho(B)$ is an edge of $\mathscr{C}(P)$ if and only if $(A \backslash B) \cup(B \backslash A)$ is connected in P.

Let, in general, G be a finite simple graph, i.e., a finite graph with no loop and with no multiple edge, on the vertex set $V(G)=\left\{v_{1}, \ldots, v_{n}\right\}$. The degree $\operatorname{deg}_{G}\left(v_{i}\right)$ of each $v_{i} \in V(G)$ is the number of edges e of G with $v_{i} \in e$. Let $i_{1} \ldots i_{n}$ denote a permutation of $1, \ldots, n$ for which $\operatorname{deg}_{G}\left(v_{i_{1}}\right) \leq \cdots \leq \operatorname{deg}_{G}\left(v_{i_{n}}\right)$. The degree sequence ($[1, \mathrm{p} .216]$) of G is the finite sequence $\left(\operatorname{deg}_{G}\left(v_{i_{1}}\right), \ldots, \operatorname{deg}_{G}\left(v_{i_{n}}\right)\right)$.

Example 1.2. Let X denote the poset.
Then the degree sequence of the finite simple graph which is the 1 -skeleton of $\mathscr{O}(X)$ is

$$
(6,6,6,6,6,6,6,6)
$$

and that of $\mathscr{C}(X)$ is

$$
(5,6,6,6,6,6,6,7)
$$

This observation guarantees that, even though the number of edges of $\mathscr{O}(X)$ is equal to that of $\mathscr{C}(X)$, one cannot construct a bijection $\varphi: V(\mathscr{O}(X)) \rightarrow V(\mathscr{C}(X))$, where $V(\mathscr{O}(X))$ is the set of vertices of $\mathscr{O}(X)$ and $V(\mathscr{C}(X))$ is that of $\mathscr{C}(X)$, with the property that, for α and β belonging to $V(\mathscr{O}(X))$, the segment combining α and β is an edge of $\mathscr{O}(X)$ if and only if the segment combining $\varphi(\alpha)$ and $\varphi(\beta)$ is an edge of $\mathscr{C}(X)$.

2. The number of edges of order polytopes and chain polytopes

We now come to the main result of the present paper.
Theorem 2.1. Let P be an arbitrary finite poset. Then the number of edges of the order polytope $\mathscr{O}(P)$ is equal to that of the chain polytope $\mathscr{C}(P)$.

Proof. Let Ω denote the set of pairs (I, J), where I and J are poset ideals of P with $I \neq J$ for which $I \subset J$ and $J \backslash I$ is connected in P. Let Ψ denote the set of pairs (A, B), where A and B are antichains of P with $A \neq B$ for which $(A \backslash B) \cup(B \backslash A)$ is connected in P.

As is stated in the proof of [4, Lemma 2.3], if there exist $x, x^{\prime} \in A$ and $y, y^{\prime} \in B$ with $x<y$ and $y^{\prime}<x^{\prime}$, then $(A \backslash B) \cup(B \backslash A)$ cannot be connected. In fact, if $(A \backslash B) \cup(B \backslash A)$ is connected, then there exists a sequence $x=x_{0}, y_{0}, x_{1}, y_{1}, \ldots, y_{s}, x_{s}=x^{\prime}$ with each $x_{i} \in A \backslash B$ and each $b_{j} \in B \backslash A$ such that x_{i} and y_{i} are comparable for each i and that y_{j} and x_{j+1} are comparable for each j. Since $x<y$ and since B is an antichain, it follows that $x=x_{0}<y_{0}$. Then, since A is an antichain, one has $y_{0}>x_{1}$. Continuing these arguments says that $y_{s}>x_{s}=x^{\prime}$. However, since $y^{\prime}<x^{\prime}$, one has $y^{\prime}<y_{s}$, which contradicts the fact that B is an antichain.

https://daneshyari.com/en/article/5776984

Download Persian Version:
https://daneshyari.com/article/5776984

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: hibi@math.sci.osaka-u.ac.jp (T. Hibi), nan@math.mit.edu (N. Li), y-sahara@cr.math.sci.osaka-u.ac.jp (Y. Sahara), a-shikama@cr.math.sci.osaka-u.ac.jp (A. Shikama).

