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a b s t r a c t

For two families of setsF,G ⊂ 2[n] we define their set-wise union,
F ∨ G = {F ∪ G : F ∈ F,G ∈ G} and establish several – hopefully
useful – inequalities concerning |F ∨ G|. Some applications are
provided as well.
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1. Introduction

For a non-negative integer n let [n] = {1, . . . , n} be the standard n-element set and 2[n] its power
set. A subset F ⊂ 2[n] is called a family. If G ⊂ F ∈ F implies G ∈ F for all G, F ⊂ [n] then G is
called a complex (down-set). Let F c denote the complement, [n] \ F of F . Also let F c

= {F c
: F ∈ F} be

the complementary family. One of the earliest and no doubt the easiest result in extremal set theory,
contained in the seminal paper of Erdős, Ko and Rado can be formulated as follows.

Theorem 0 ([1]). Suppose that there are no F ,G ∈ F satisfying F ∪ G = [n]. Then

2 · |F| ≤ 2n. (1)

Proof. Just note that the condition implies F ∩ F c
= ∅. □

This simple result was the starting point of a lot of research.

Definition 1. For a positive integer t let us say that F ⊂ 2[n] is t-union if |F ∪ G| ≤ n − t for all
F ,G ∈ F .

An important result of Katona [3] was the determination of the maximum size of t-union families.
In the present paper we mostly deal with problems concerning several families.
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Definition 2. For positive integers t and r , r ≥ 2 and non-empty families F1, . . . ,Fr ⊂ 2[n], we say
that they are cross t-union if |F1 ∪ · · · ∪ Fr | ≤ n − t for all F1 ∈ F1, . . . , Fr ∈ Fr .

Definition 3. For families F, G let F ∨ G denote their set-wise union,

F ∨ G = {F ∪ G : F ∈ F, G ∈ G}.

To state our main results we need one more definition. A family F ⊂ 2[n] is said to be covering if
{i} ∈ F for all i ∈ [n]. If F is a complex, it is equivalent to saying that

⋃
F∈FF = [n].

Let us use the term cross-union for cross 1-union.

Theorem 1. Suppose that F, G ⊂ 2[n] are cross-union and covering complexes. Then

|F ∨ G| ≥
7
8
(|F| + |G|). (2)

Example 1. Let n ≥ 3 and define A =
{
A ⊂ [n] : |A ∩ [3]| ≤ 1

}
. Then |A| = 2n−1 and |A ∨ A| =

7
82

n

hold.

The above example shows that (2) is best possible.

Theorem 2. Suppose that F, G ⊂ 2[n] are non-empty cross-union complexes and F is covering. Then

|F ∨ G| ≥
3
4
(|F| + |G|). (3)

The bound (3) is best possible as shown by the next example.

Example 2. Let n ≥ 2 and define A = {A ⊂ [n] : |A ∩ [2]| ≤ 1}, B = {B ⊂ [n] : B ∩ [2] = ∅}.

Theorem 3. Suppose that F, G ⊂ 2[n] are cross 2-union and covering complexes. Then

|F ∨ G| > |F| + |G|. (4)

Setting F = {F ⊂ [n] : |F | ≤ n − 3}, G = {G ⊂ [n] : |G| ≤ 1} shows that (4) is not far from best
possible.

2. The proof of Theorems 1 and 2

Let us first note that if F, G ⊂ 2[n] are cross-union then

|F| + |G| ≤ 2n. (2.1)

Indeed the cross-union property guarantees F ∩ Gc
= ∅ and thereby |F| + |G| = |F| + |Gc

| ≤ |2[n]
|

= 2n.
In view of (2.1) the following statement easily implies Theorem 1.

Theorem 2.1. Let F, G ⊂ 2[n] be covering complexes. Then

|F ∨ G| ≥ min
{
2n,

7
8
(|F| + |G|)

}
. (2.2)

Proof. Let us recall the following standard notations. For a family H ⊂ 2[n] and 1 ≤ i ≤ n,

H(i) =
{
H \ {i} : i ∈ H ∈ H

}
⊂ 2[n]\{i},

H(ī) =
{
H : i ̸∈ H ∈ H

}
⊂ 2[n]\{i}.

Note also that for i ̸= j if {i} ∈ H then {i} ∈ H(j̄) as well. In particular, if H is a covering complex then
H(j̄) is a covering complex as well.
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