Best possible bounds concerning the set-wise union of families

CrossMark

Peter Frankl

Rényi Institute, Budapest, Hungary

A R T I C L E I N F O

Article history:

Received 14 March 2017
Accepted 27 August 2017

Abstract

For two families of sets $\mathcal{F}, \mathcal{G} \subset 2^{[n]}$ we define their set-wise union, $\mathcal{F} \vee \mathcal{G}=\{F \cup G: F \in \mathcal{F}, G \in \mathcal{G}\}$ and establish several - hopefully useful - inequalities concerning $|\mathcal{F} \vee \mathcal{G}|$. Some applications are provided as well.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For a non-negative integer n let $[n]=\{1, \ldots, n\}$ be the standard n-element set and $2^{[n]}$ its power set. A subset $\mathcal{F} \subset 2^{[n]}$ is called a family. If $G \subset F \in \mathcal{F}$ implies $G \in \mathcal{F}$ for all $G, F \subset[n]$ then \mathcal{G} is called a complex (down-set). Let F^{c} denote the complement, $[n] \backslash F$ of F. Also let $\mathcal{F}^{c}=\left\{F^{c}: F \in \mathcal{F}\right\}$ be the complementary family. One of the earliest and no doubt the easiest result in extremal set theory, contained in the seminal paper of Erdős, Ko and Rado can be formulated as follows.

Theorem $\mathbf{0}$ ([1]). Suppose that there are no $F, G \in \mathcal{F}$ satisfying $F \cup G=[n]$. Then

$$
\begin{equation*}
2 \cdot|\mathcal{F}| \leq 2^{n} . \tag{1}
\end{equation*}
$$

Proof. Just note that the condition implies $\mathcal{F} \cap \mathcal{F}^{c}=\emptyset$.
This simple result was the starting point of a lot of research.
Definition 1. For a positive integer t let us say that $\mathcal{F} \subset 2^{[n]}$ is t-union if $|F \cup G| \leq n-t$ for all $F, G \in \mathcal{F}$.

An important result of Katona [3] was the determination of the maximum size of t-union families. In the present paper we mostly deal with problems concerning several families.

[^0]Definition 2. For positive integers t and $r, r \geq 2$ and non-empty families $\mathcal{F}_{1}, \ldots, \mathcal{F}_{r} \subset 2^{[n]}$, we say that they are cross t-union if $\left|F_{1} \cup \cdots \cup F_{r}\right| \leq n-t$ for all $F_{1} \in \mathcal{F}_{1}, \ldots, F_{r} \in \mathcal{F}_{r}$.

Definition 3. For families \mathcal{F}, \mathcal{G} let $\mathcal{F} \vee \mathcal{G}$ denote their set-wise union,

$$
\mathcal{F} \vee \mathcal{G}=\{F \cup G: F \in \mathcal{F}, G \in \mathcal{G}\}
$$

To state our main results we need one more definition. A family $\mathcal{F} \subset 2^{[n]}$ is said to be covering if $\{i\} \in \mathcal{F}$ for all $i \in[n]$. If \mathcal{F} is a complex, it is equivalent to saying that $\bigcup_{F \in \mathcal{F}} F=[n]$.

Let us use the term cross-union for cross 1-union.
Theorem 1. Suppose that $\mathcal{F}, \mathcal{G} \subset 2^{[n]}$ are cross-union and covering complexes. Then

$$
\begin{equation*}
|\mathcal{F} \vee \mathcal{G}| \geq \frac{7}{8}(|\mathcal{F}|+|\mathcal{G}|) \tag{2}
\end{equation*}
$$

Example 1. Let $n \geq 3$ and define $\mathcal{A}=\{A \subset[n]:|A \cap[3]| \leq 1\}$. Then $|\mathcal{A}|=2^{n-1}$ and $|\mathcal{A} \vee \mathcal{A}|=\frac{7}{8} 2^{n}$ hold.

The above example shows that (2) is best possible.
Theorem 2. Suppose that $\mathcal{F}, \mathcal{G} \subset 2^{[n]}$ are non-empty cross-union complexes and \mathcal{F} is covering. Then

$$
\begin{equation*}
|\mathcal{F} \vee \mathcal{G}| \geq \frac{3}{4}(|\mathcal{F}|+|\mathcal{G}|) \tag{3}
\end{equation*}
$$

The bound (3) is best possible as shown by the next example.
Example 2. Let $n \geq 2$ and define $\mathcal{A}=\{A \subset[n]:|A \cap[2]| \leq 1\}, \mathcal{B}=\{B \subset[n]: B \cap[2]=\emptyset\}$.
Theorem 3. Suppose that $\mathcal{F}, \mathcal{G} \subset 2^{[n]}$ are cross 2 -union and covering complexes. Then

$$
\begin{equation*}
|\mathcal{F} \vee \mathcal{G}|>|\mathcal{F}|+|\mathcal{G}| \tag{4}
\end{equation*}
$$

Setting $\mathcal{F}=\{F \subset[n]:|F| \leq n-3\}, \mathcal{G}=\{G \subset[n]:|G| \leq 1\}$ shows that (4) is not far from best possible.

2. The proof of Theorems 1 and 2

Let us first note that if $\mathcal{F}, \mathcal{G} \subset 2^{[n]}$ are cross-union then

$$
\begin{equation*}
|\mathcal{F}|+|\mathcal{G}| \leq 2^{n} \tag{2.1}
\end{equation*}
$$

Indeed the cross-union property guarantees $\mathcal{F} \cap \mathcal{G}^{c}=\emptyset$ and thereby $|\mathcal{F}|+|\mathcal{G}|=|\mathcal{F}|+\left|\mathcal{G}^{c}\right| \leq\left|2^{[n]}\right|$ $=2^{n}$.

In view of (2.1) the following statement easily implies Theorem 1.
Theorem 2.1. Let $\mathcal{F}, \mathcal{G} \subset 2^{[n]}$ be covering complexes. Then

$$
\begin{equation*}
|\mathcal{F} \vee \mathcal{G}| \geq \min \left\{2^{n}, \frac{7}{8}(|\mathcal{F}|+|\mathcal{G}|)\right\} \tag{2.2}
\end{equation*}
$$

Proof. Let us recall the following standard notations. For a family $\mathcal{H} \subset 2^{[n]}$ and $1 \leq i \leq n$,

$$
\begin{aligned}
& \mathcal{H}(i)=\{H \backslash\{i\}: i \in H \in \mathcal{H}\} \subset 2^{[n] \backslash\{i\}} \\
& \mathcal{H}(\bar{i})=\{H \quad: i \notin H \in \mathcal{H}\} \subset 2^{[n] \backslash\{i\}}
\end{aligned}
$$

Note also that for $i \neq j$ if $\{i\} \in \mathcal{H}$ then $\{i\} \in \mathcal{H}(\bar{j})$ as well. In particular, if \mathcal{H} is a covering complex then $\mathcal{H}(\bar{j})$ is a covering complex as well.

https://daneshyari.com/en/article/5777321

Download Persian Version:

https://daneshyari.com/article/5777321

Daneshyari.com

[^0]: E-mail address: peter.frankl@gmail.com.

