

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

Best possible bounds concerning the set-wise union of families

(1)

European Journal of Combinatorics

Peter Frankl

Rényi Institute, Budapest, Hungary

ARTICLE INFO

Article history: Received 14 March 2017 Accepted 27 August 2017 ABSTRACT

For two families of sets \mathcal{F} , $\mathcal{G} \subset 2^{[n]}$ we define their set-wise union, $\mathcal{F} \lor \mathcal{G} = \{F \cup G : F \in \mathcal{F}, G \in \mathcal{G}\}$ and establish several – hopefully useful – inequalities concerning $|\mathcal{F} \lor \mathcal{G}|$. Some applications are provided as well.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For a non-negative integer n let $[n] = \{1, ..., n\}$ be the standard n-element set and $2^{[n]}$ its power set. A subset $\mathcal{F} \subset 2^{[n]}$ is called a *family*. If $G \subset F \in \mathcal{F}$ implies $G \in \mathcal{F}$ for all $G, F \subset [n]$ then \mathcal{G} is called a *complex* (*down-set*). Let F^c denote the complement, $[n] \setminus F$ of F. Also let $\mathcal{F}^c = \{F^c : F \in \mathcal{F}\}$ be the *complementary* family. One of the earliest and no doubt the easiest result in extremal set theory, contained in the seminal paper of Erdős, Ko and Rado can be formulated as follows.

Theorem 0 ([1]). Suppose that there are no $F, G \in \mathcal{F}$ satisfying $F \cup G = [n]$. Then

$$2 \cdot |\mathcal{F}| \leq 2^n$$

Proof. Just note that the condition implies $\mathcal{F} \cap \mathcal{F}^{c} = \emptyset$. \Box

This simple result was the starting point of a lot of research.

Definition 1. For a positive integer t let us say that $\mathcal{F} \subset 2^{[n]}$ is t-union if $|F \cup G| \leq n - t$ for all $F, G \in \mathcal{F}$.

An important result of Katona [3] was the determination of the maximum size of *t*-union families. In the present paper we mostly deal with problems concerning several families.

http://dx.doi.org/10.1016/j.ejc.2017.08.006

E-mail address: peter.frankl@gmail.com.

^{0195-6698/© 2017} Elsevier Ltd. All rights reserved.

Definition 2. For positive integers *t* and *r*, $r \ge 2$ and non-empty families $\mathcal{F}_1, \ldots, \mathcal{F}_r \subset 2^{[n]}$, we say that they are *cross t-union* if $|F_1 \cup \cdots \cup F_r| \le n - t$ for all $F_1 \in \mathcal{F}_1, \ldots, F_r \in \mathcal{F}_r$.

Definition 3. For families \mathcal{F} , \mathcal{G} let $\mathcal{F} \lor \mathcal{G}$ denote their set-wise union,

 $\mathcal{F} \lor \mathcal{G} = \{ F \cup G : F \in \mathcal{F}, \ G \in \mathcal{G} \}.$

To state our main results we need one more definition. A family $\mathcal{F} \subset 2^{[n]}$ is said to be *covering* if $\{i\} \in \mathcal{F}$ for all $i \in [n]$. If \mathcal{F} is a complex, it is equivalent to saying that $\bigcup_{F \in \mathcal{F}} F = [n]$.

Let us use the term *cross-union* for cross 1-union.

Theorem 1. Suppose that $\mathcal{F}, \mathcal{G} \subset 2^{[n]}$ are cross-union and covering complexes. Then

$$|\mathcal{F} \vee \mathcal{G}| \ge \frac{7}{8} (|\mathcal{F}| + |\mathcal{G}|). \tag{2}$$

Example 1. Let $n \ge 3$ and define $\mathcal{A} = \{A \subset [n] : |A \cap [3]| \le 1\}$. Then $|\mathcal{A}| = 2^{n-1}$ and $|\mathcal{A} \lor \mathcal{A}| = \frac{7}{8}2^n$ hold.

The above example shows that (2) is best possible.

Theorem 2. Suppose that $\mathcal{F}, \mathcal{G} \subset 2^{[n]}$ are non-empty cross-union complexes and \mathcal{F} is covering. Then

$$|\mathcal{F} \vee \mathcal{G}| \ge \frac{3}{4} (|\mathcal{F}| + |\mathcal{G}|). \tag{3}$$

The bound (3) is best possible as shown by the next example.

Example 2. Let $n \ge 2$ and define $\mathcal{A} = \{A \subset [n] : |A \cap [2]| \le 1\}, \mathcal{B} = \{B \subset [n] : B \cap [2] = \emptyset\}.$

Theorem 3. Suppose that $\mathcal{F}, \mathcal{G} \subset 2^{[n]}$ are cross 2-union and covering complexes. Then

$$|\mathcal{F} \vee \mathcal{G}| > |\mathcal{F}| + |\mathcal{G}|. \tag{4}$$

Setting $\mathcal{F} = \{F \subset [n] : |F| \le n - 3\}$, $\mathcal{G} = \{G \subset [n] : |G| \le 1\}$ shows that (4) is not far from best possible.

2. The proof of Theorems 1 and 2

Let us first note that if $\mathcal{F}, \mathcal{G} \subset 2^{[n]}$ are cross-union then

$$|\mathcal{F}| + |\mathcal{G}| \le 2^n. \tag{2.1}$$

Indeed the cross-union property guarantees $\mathcal{F} \cap \mathcal{G}^c = \emptyset$ and thereby $|\mathcal{F}| + |\mathcal{G}| = |\mathcal{F}| + |\mathcal{G}^c| \le |2^{[n]}| = 2^n$.

In view of (2.1) the following statement easily implies Theorem 1.

Theorem 2.1. Let $\mathcal{F}, \mathcal{G} \subset 2^{[n]}$ be covering complexes. Then

$$|\mathcal{F} \vee \mathcal{G}| \ge \min\left\{2^n, \frac{7}{8}(|\mathcal{F}| + |\mathcal{G}|)\right\}.$$
(2.2)

Proof. Let us recall the following standard notations. For a family $\mathcal{H} \subset 2^{[n]}$ and $1 \le i \le n$,

$$\begin{aligned} \mathcal{H}(i) &= \left\{ H \setminus \{i\} : i \in H \in \mathcal{H} \right\} \subset 2^{\lfloor n \rfloor \setminus \{i\}}, \\ \mathcal{H}(\bar{i}) &= \left\{ H \qquad : i \notin H \in \mathcal{H} \right\} \subset 2^{\lfloor n \rfloor \setminus \{i\}}. \end{aligned}$$

Note also that for $i \neq j$ if $\{i\} \in \mathcal{H}$ then $\{i\} \in \mathcal{H}(\overline{j})$ as well. In particular, if \mathcal{H} is a covering complex then $\mathcal{H}(\overline{j})$ is a covering complex as well.

Download English Version:

https://daneshyari.com/en/article/5777321

Download Persian Version:

https://daneshyari.com/article/5777321

Daneshyari.com