The serpent nest conjecture for accordion complexes

Thibault Manneville
LIX, École Polytechnique, France

ARTICLE INFO

Article history:

Received 11 May 2017
Accepted 22 August 2017
Available online 20 September 2017

Abstract

Consider $2 n$ points on the unit circle and a reference dissection D_{\circ} of the convex hull of the odd points. The accordion complex of D_{\circ} is the simplicial complex of subsets of pairwise noncrossing diagonals with even endpoints that cross a connected set of diagonals of the dissection D_{0}. In particular, this complex is an associahedron when D_{\circ} is a triangulation, and a Stokes complex when D_{\circ} is a quadrangulation. We exhibit a bijection between the facets of the accordion complex of D_{\circ} and some dual objects called the serpent nests of D_{0}. This confirms in particular a prediction of F. Chapoton (2016) in the case of Stokes complexes.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivations

Y. Baryshnikov introduced in [1] the definition of a Stokes complex, namely the simplicial complex of dissections of a polygon that are in some sense compatible with a reference quadrangulation Q_{0}. Although the precise definition of compatibility is a bit technical in [1], it turns out that a diagonal is compatible with Q_{0} if and only if it crosses a connected subset of diagonals of a slightly rotated version of Q_{o}, that we call an accordion of Q_{o}. We therefore also call Y. Baryshnikov's simplicial complex the accordion complex $\mathcal{A C}\left(\mathrm{Q}_{0}\right)$ of Q_{0}. As an example, this complex coincides with the classical associahedron when all the diagonals of the reference quadrangulation Q_{0} have a common endpoint. Revisiting some combinatorial and algebraic properties of $\mathcal{A C}\left(\mathrm{Q}_{0}\right)$, F . Chapoton [2] raised three challenges: first prove that the dual graph of $\mathcal{A C}\left(\mathrm{Q}_{0}\right)$, suitably oriented, has a lattice structure extending the Tamari and Cambrian lattices [6-8]; second construct geometric realizations of $\mathcal{A C}\left(\mathrm{Q}_{0}\right)$ as fans and polytopes

[^0]generalizing the known constructions of the associahedron; third show enumerative properties of the faces of $\mathcal{A C}\left(\mathrm{Q}_{0}\right)$, among which he expects a bijection to exist between the facets of $\mathcal{A C}\left(\mathrm{Q}_{0}\right)$ and other combinatorial objects called serpent nests. These three challenges are evoked in the introduction of [2], respectively, at paragraph 22, last paragraph and paragraph 15 . The serpent nest conjecture is also a specialization of [2, Conjecture 4.5] for $x=y=1$. Serpent nests are essentially special sets of dual paths in the dual tree of the reference quadrangulation Q_{0}. As for the two other challenges, their study is related to extensions of known phenomena on the associahedron. Serpent nests are indeed expected by F. Chapoton to play the same role towards Stokes complexes as nonnesting partitions towards associahedra. The serpent nest conjecture therefore morally asserts that the fact that nonnesting partitions are in bijection with triangulations of convex polygons holds in the more general context of Stokes complexes.

In [3], A. Garver and T. McConville defined and studied the accordion complex $\mathcal{A C}\left(\mathrm{D}_{\circ}\right)$ of any reference dissection D_{0}. Our presentation slightly differs from their's as they use a compatibility condition on the dual tree of the dissection D_{o}, but the simplicial complex is the same. In this context, they settled F . Chapoton's lattice question, using lattice quotients of a lattice of biclosed sets. In a paper of T. Manneville and V. Pilaud [5], geometric realizations (as fans and convex polytopes) of $\mathcal{A C}\left(\mathrm{D}_{\circ}\right)$ were given for any reference dissection D_{0}, providing in particular an answer to F . Chapoton's geometric question. The present paper settles the serpent nest conjecture of F . Chapoton, in a version extended to any accordion complex. Other enumerative conjectures involving a statistic called F triangle are proposed in [2]. A proof that this statistic is preserved by the twist operation [2, Conjecture 2.6] can be found in [4, Section 8.3.2], but this result should go together with others that remain open for the moment.

1.2. Overview

Section 2 introduces the accordion complex of a dissection D_{0}. We follow the presentation already adopted in [5], where the definitions and arguments of A. Garver and T. McConville [3] are adapted to work directly on the dissection D_{\circ} rather than on its dual graph. We define serpent nests in Section 3 and present there our bijection between the facets of $\mathcal{A C}\left(\mathrm{D}_{\circ}\right)$ and the serpent nests of D_{0}.

2. Accordion dissections

By a diagonal of a convex polygon \mathcal{P}, we mean either an internal diagonal or an external diagonal (boundary edge) of \mathcal{P}, but a dissection D of \mathcal{P} is a set of pairwise noncrossing internal diagonals of \mathcal{P}. We denote diagonals as pairs (i, j) of vertices, with $i \leq j$ when the labels on vertices are ordered. We moreover denote by $\overline{\mathrm{D}}$ the dissection D together with all boundary edges of \mathcal{P}. The cells of D are the bounded connected components of the plane minus the diagonals of D. An accordion of D is a subset of \bar{D} which contains either no or two incident diagonals in each cell of D. A subaccordion of D is a subset of D formed by the diagonals between two given internal diagonals in an accordion of D. A zigzag of D is a subset $\left\{\delta_{0}, \ldots, \delta_{p+1}\right\}$ of D where δ_{i} shares distinct endpoints with δ_{i-1} and δ_{i+1} and separates them for any $i \in[p]$. The zigzag of an accordion A is the subset of the diagonals of A which disconnect A . Notice that accordions of D contain boundary edges of \mathcal{P}, but not subaccordions nor zigzags. See Fig. 1 for illustrations.

Consider $2 n$ points on the unit circle labeled clockwise by $1_{\circ}, 2_{\bullet}, 3_{\circ}, 4_{\bullet}, \ldots,(2 n-1)_{\circ},(2 n)$. (with labels meant modulo $2 n)$. We say that $1_{\circ}, \ldots,(2 n-1)_{\text {o }}$ are the hollow vertices while $2_{\bullet}, \ldots,(2 n)$. are the solid vertices. The hollow polygon is the convex hull \mathcal{P}_{\circ} of $1_{\circ}, \ldots,(2 n-1)$ 。 while the solid polygon is the convex hull \mathcal{P}_{\bullet} of $2_{\bullet}, \ldots,(2 n)$. We simultaneously consider hollow diagonals δ_{\circ} (with two hollow vertices) and solid diagonals δ_{\bullet} (with two solid vertices), but never consider diagonals with vertices of each kind. Similarly, we consider hollow dissections D_{\circ} (with only hollow diagonals) and solid dissections $\mathrm{D}_{\mathbf{0}}$ (with only solid diagonals), but never mix hollow and solid diagonals in a dissection. To distinguish them more easily, hollow (resp. solid) vertices and diagonals appear red (resp. blue) in all pictures.

Let $\mathrm{D}_{\text {o }}$ be an arbitrary reference hollow dissection. A D_{\circ}-accordion diagonal is a solid diagonal $\delta_{\text {- }}$ such that the hollow diagonals of $\overline{\mathrm{D}}_{\circ}$ crossed by δ_{\bullet} form an accordion of D_{0}. In other words, δ_{\bullet}

https://daneshyari.com/en/article/5777344

Download Persian Version:
https://daneshyari.com/article/5777344

Daneshyari.com

[^0]: E-mail address: thibault.manneville@polytechnique.edu.
 URL: http://www.lix.polytechnique.fr/~manneville/.

