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a b s t r a c t

Consider 2n points on the unit circle and a reference dissection D◦

of the convex hull of the odd points. The accordion complex of D◦ is
the simplicial complex of subsets of pairwise noncrossing diagonals
with even endpoints that cross a connected set of diagonals of
the dissection D◦. In particular, this complex is an associahedron
when D◦ is a triangulation, and a Stokes complex when D◦ is a
quadrangulation. We exhibit a bijection between the facets of the
accordion complex of D◦ and some dual objects called the serpent
nests of D◦. This confirms in particular a prediction of F. Chapoton
(2016) in the case of Stokes complexes.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivations

Y. Baryshnikov introduced in [1] the definition of a Stokes complex, namely the simplicial complex
of dissections of a polygon that are in some sense compatible with a reference quadrangulation Q◦.
Although the precise definition of compatibility is a bit technical in [1], it turns out that a diagonal is
compatiblewith Q◦ if and only if it crosses a connected subset of diagonals of a slightly rotated version
of Q◦, that we call an accordion of Q◦. We therefore also call Y. Baryshnikov’s simplicial complex the
accordion complex AC(Q◦) of Q◦. As an example, this complex coincides with the classical associahe-
dron when all the diagonals of the reference quadrangulation Q◦ have a common endpoint. Revisiting
some combinatorial and algebraic properties of AC(Q◦), F. Chapoton [2] raised three challenges: first
prove that the dual graph of AC(Q◦), suitably oriented, has a lattice structure extending the Tamari
and Cambrian lattices [6–8]; second construct geometric realizations ofAC(Q◦) as fans and polytopes
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generalizing the known constructions of the associahedron; third show enumerative properties of the
faces of AC(Q◦), among which he expects a bijection to exist between the facets of AC(Q◦) and other
combinatorial objects called serpent nests. These three challenges are evoked in the introduction of [2],
respectively, at paragraph 22, last paragraph and paragraph 15. The serpent nest conjecture is also a
specialization of [2, Conjecture 4.5] for x = y = 1. Serpent nests are essentially special sets of dual
paths in the dual tree of the reference quadrangulation Q◦. As for the two other challenges, their study
is related to extensions of knownphenomena on the associahedron. Serpent nests are indeed expected
by F. Chapoton to play the same role towards Stokes complexes as nonnesting partitions towards
associahedra. The serpent nest conjecture therefore morally asserts that the fact that nonnesting
partitions are in bijection with triangulations of convex polygons holds in the more general context
of Stokes complexes.

In [3], A. Garver and T. McConville defined and studied the accordion complex AC(D◦) of any
reference dissection D◦. Our presentation slightly differs from their’s as they use a compatibility
condition on the dual tree of the dissection D◦, but the simplicial complex is the same. In this context,
they settled F. Chapoton’s lattice question, using lattice quotients of a lattice of biclosed sets. In a paper
of T. Manneville and V. Pilaud [5], geometric realizations (as fans and convex polytopes) of AC(D◦)
were given for any reference dissection D◦, providing in particular an answer to F. Chapoton’s
geometric question. The present paper settles the serpent nest conjecture of F. Chapoton, in a version
extended to any accordion complex. Other enumerative conjectures involving a statistic called F-
triangle are proposed in [2]. A proof that this statistic is preserved by the twist operation [2, Conjecture
2.6] can be found in [4, Section 8.3.2], but this result should go together with others that remain open
for the moment.

1.2. Overview

Section 2 introduces the accordion complex of a dissection D◦. We follow the presentation already
adopted in [5], where the definitions and arguments of A. Garver and T. McConville [3] are adapted to
work directly on the dissection D◦ rather than on its dual graph. We define serpent nests in Section 3
and present there our bijection between the facets of AC(D◦) and the serpent nests of D◦.

2. Accordion dissections

By a diagonal of a convex polygon P , we mean either an internal diagonal or an external diagonal
(boundary edge) of P , but a dissection D of P is a set of pairwise noncrossing internal diagonals of P .
We denote diagonals as pairs (i, j) of vertices, with i ≤ j when the labels on vertices are ordered. We
moreover denote by D̄ the dissection D together with all boundary edges of P . The cells of D are the
bounded connected components of the plane minus the diagonals of D̄. An accordion of D is a subset
of D̄ which contains either no or two incident diagonals in each cell of D. A subaccordion of D is a subset
of D formed by the diagonals between two given internal diagonals in an accordion of D. A zigzag of D
is a subset {δ0, . . . , δp+1} of Dwhere δi shares distinct endpointswith δi−1 and δi+1 and separates them
for any i ∈ [p]. The zigzag of an accordion A is the subset of the diagonals of A which disconnect A.
Notice that accordions of D contain boundary edges of P , but not subaccordions nor zigzags. See Fig. 1
for illustrations.

Consider 2n points on the unit circle labeled clockwise by 1◦, 2•, 3◦, 4•, . . . , (2n− 1)◦, (2n)• (with
labels meant modulo 2n). We say that 1◦, . . . , (2n − 1)◦ are the hollow vertices while 2•, . . . , (2n)•
are the solid vertices. The hollow polygon is the convex hull P◦ of 1◦, . . . , (2n − 1)◦ while the solid
polygon is the convex hull P• of 2•, . . . , (2n)•. We simultaneously consider hollow diagonals δ◦ (with
two hollow vertices) and solid diagonals δ• (with two solid vertices), but never consider diagonals
with vertices of each kind. Similarly, we consider hollow dissections D◦ (with only hollow diagonals)
and solid dissections D• (with only solid diagonals), but never mix hollow and solid diagonals in a
dissection. To distinguish them more easily, hollow (resp. solid) vertices and diagonals appear red
(resp. blue) in all pictures.

Let D◦ be an arbitrary reference hollow dissection. A D◦-accordion diagonal is a solid diagonal δ•

such that the hollow diagonals of D̄◦ crossed by δ• form an accordion of D◦. In other words, δ•
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