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a b s t r a c t

Many fundamental and important questions fromstatistical physics
lead to beautiful problems in extremal and probabilistic combi-
natorics. One particular example of this phenomenon is the study
of bootstrap percolation, which is motivated by a variety of ‘real-
world’ cellular automata, such as the Glauber dynamics of the Ising
model of ferromagnetism, and kinetically constrained spin models
of the liquid–glass transition.

In this review article, we will describe some dramatic recent
developments in the theory of bootstrap percolation (and, more
generally, of monotone cellular automata with random initial con-
ditions), and discuss some potential extensions of these methods
and results to other automata. In particular, wewill state numerous
conjectures and open problems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Cellular automata are interacting particle systemswhoseupdate rules are ‘local’ andhomogeneous.
In recent years, a great deal of progress has been made in understanding the behaviour of a particular
class ofmonotone cellular automata, commonly known as ‘bootstrap percolation’. In particular, if one
considers only two-dimensional automata, then we now have a fairly precise understanding of the
typical evolution of these processes, starting from random initial conditions. The aim of this article
is to describe some of these developments, and discuss a number of open problems and conjectures
about related cellular automata. In particular, we will focus our attention on kinetically constrained
spin models, the Glauber dynamics of the zero-temperature Ising model, and the abelian sandpile.1

Let us begin by defining a large class of d-dimensional monotone cellular automata, which were
recently introduced by Bollobás, Smith and Uzzell [14].

E-mail address: rob@impa.br.
1 Wewould like to reassure the reader that the definitions of these models are all purely combinatorial, non-technical, and

easy to understand, and that no knowledge of physics will be required in this paper.
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Definition 1.1. Let U = {X1, . . . , Xm} be an arbitrary finite collection of finite subsets of Zd
\ {0}. The

U-bootstrap process on the d-dimensional torus Zd
n is defined as follows: given a set A ⊂ Zd

n of initially
infected sites, set A0 = A, and define for each t ⩾ 0,

At+1 = At ∪
{
v ∈ Zd

n : v + X ⊂ At for some X ∈ U
}
.

We write [A]U =
⋃

t⩾0At for the closure of A under the U-bootstrap process.

Thus, a vertex v becomes infected at time t+1 if the translate by v of one of the sets in U (whichwe
refer to as the update family) is already entirely infected at time t , and infected vertices remain infected
forever. For example, if we take U to be N d

r , the family of r-subsets of the 2d nearest neighbours in
Zd of the origin, we obtain the classical r-neighbour bootstrap process, which was first introduced in
1979 by Chalupa, Leath and Reich [19].

We are interested in the typical global behaviour of the U-bootstrap process acting on random
initial sets. One of the key insights of Bollobás, Smith and Uzzell [14] was that, at least in two
dimensions, this behaviour should be determined by the action of the process on discrete half-planes.
To be more precise, for each u ∈ S1, let Hu := {x ∈ Z2

: ⟨x, u⟩ < 0} be the discrete half-plane whose
boundary is perpendicular to u. We say that u is a stable direction if [Hu]U = Hu and we denote by
S = S(U) ⊂ S1 the collection of stable directions. Let us say that a two-dimensional update familyU is:

• supercritical if there exists an open semicircle in S1 that is disjoint from S ,
• critical if there exists a semicircle in S1 that has finite intersection with S , and if every open

semicircle in S1 has non-empty intersection with S ,
• subcritical if every semicircle in S1 has infinite intersection with S.

To justify this trichotomy, we need a couple more simple definitions. Let us say that a set A ⊂ Zd
n

is p-random if each of the vertices of Zd
n is included in A independently with probability p, and define

the critical probability of the U-bootstrap process on Zd
n to be

pc
(
Zd
n,U

)
:= inf

{
p : Pp

(
[A]U = Zd

n

)
⩾ 1/2

}
,

where Pp denotes the product probability measure on Zd
n with density p.2 The following theoremwas

proved by Bollobás, Smith and Uzzell [14] (parts (a) and (b)) and by Balister, Bollobás, Przykucki and
Smith [6] (part (c)).

Theorem 1.2. Let U be a two-dimensional update family.

(a) If U is supercritical then pc(Z2
n,U) = n−Θ(1).

(b) If U is critical then pc(Z2
n,U) = (log n)−Θ(1).

(c) If U is subcritical then lim infn→∞ pc(Z2
n,U) > 0.

It is perhaps difficult to convey to the reader how surprising it is that such a simple and beautiful
characterization could be proved in such extraordinary generality. Nevertheless, this is not the end
of the story: to state the main result of [12], which determines pc(Z2

n,U) for critical families up to a
constant factor, we will need a couple more definitions.

Let Q1 ⊂ S1 denote the set of rational directions on the circle, and for each u ∈ Q1, let ℓ+
u be the

(infinite) subset of the line ℓu := {x ∈ Z2
: ⟨x, u⟩ = 0} consisting of the origin and the sites to the

right of the origin as one looks in the direction of u. Similarly, let ℓ−
u := (ℓu \ ℓ+

u ) ∪ {0} consist of the
origin and the sites to the left of the origin.

Now, given a two-dimensional bootstrap percolation update family U , let α+

U (u) be the minimum
(possibly infinite) cardinality of a set Z ⊂ Z2 such that [Hu ∪ Z]U contains infinitely many sites of ℓ+

u ,
and define α−

U (u) similarly (using ℓ−
u in place of ℓ+

u ).

2 Thus a p-random set is one chosen according to the distribution Pp .
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